100,032 research outputs found
Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms
<p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p>
<p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p>
<p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p>
Phosphorylation of purine and pyrimidine nucleosides by isolated rat liver mitochondria
Formation of 5'-AMP, 5'-GMP, 5'-CMP and 5'UMP was confirmed in isolated rat liver mitochondria incubated with alpha-ketoglutarate, inorganic phosphate, purine nucleoside and pyrimidine nucleoside. Increased incorporation of 32Pi into ATP, GTP and UTP was observed by adding purine- and pyrimidine nucleosides. The phosphorylation of nucleosides was inhibited severely by arsenite and affected slightly by the addition of nuclear or post-mitochondrial fraction.</p
Giant spin canting in the S = 1/2 antiferromagnetic chain [CuPM(NO3)2(H2O)2]n observed by 13C-NMR
We present a combined experimental and theoretical study on copper pyrimidine
dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet with
alternating local symmetry. From the local susceptibility measured by NMR at
the three inequivalent carbon sites in the pyrimidine molecule we deduce a
giant spin canting, i.e., an additional staggered magnetization perpendicular
to the applied external field at low temperatures. The magnitude of the
transverse magnetization, the spin canting of 52 degrees at 10 K and 9.3 T and
its temperature dependence are in excellent agreement with exact
diagonalization calculations.Comment: 5 pages, 6 Postscript figure
The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown
Synthesis and coordination chemistry of 2-(di-2-pyridylamino)pyrimidine; structural aspects of spin crossover in an Fe(II) complex
This paper was accepted on February 26 20122-(Di-2-pyridylamino)pyrimidine (L), a potentially ditopic tetradentate ligand, was synthesized from commercially available di-2-pyridylamine and 2-chloropyrimidine. Despite being capable of bridging two metal atoms with bidentate chelation of both metal centres, L prefers to chelate or bridge through the more basic pyridyl donors of the di-2-pyridylamine moiety. Mononuclear trans-[Fe(NCS)2(L)2] and [Cu(L)2(H2O)](BF4)2•H2O complexes, and a discrete [Ag2(L)4](PF6)2 metallomacrocycle were isolated and structurally characterized by X-ray crystallography. A mononuclear palladium complex [PdCl2(L)]•(solvate), where solvate = ½H2O or CH2Cl2, was also readily obtained in 71% yield. One example of the ligand acting as a bis(bidentate) bridging ligand was observed in a dinuclear [(PdCl2)2(L)]•¾H2O complex that was obtained only in very low yield (ca. 3%) from the reaction that produced [PdCl2(L)]•½H2O. trans-[Fe(NCS)2(L)2] undergoes a temperature dependent HS-LS (HS = high spin; LS = low spin) crossover at ca. 205 K that was 2 observed by X-ray crystallography and magnetic measurements and attempts were made to understand the structural basis of this process. Despite efforts to isolate examples of L bridging two iron(II) centres, only the mononuclear trans-[Fe(NCS)2(L)2] species could be obtained.Rachel S. Crees, Boujemma Moubaraki, Keith S. Murray, and Christopher J. Sumb
The Effects of Ultraviolet Light on Anthocyanin Accumulation in the Adventitious Roots of Sedum wrightii (Crassulaceae)
Several studies have supported the idea that anthocyanin accumulation may be a possible protection mechanism in plants against DNA damage caused by ultraviolet radiation (UV). This study explored the accumulation of anthocyanins in the adventitious root tips of Sedum wrightii using the following treatments: UVA, UVA+low UVB, and UVA+high UVB. Following exposure to UV radiation, samples were analyzed for anthocyanin accumulation using an ethanol extraction procedure. Using ELISA, additional root samples were analyzed for indicators of DNA damage: cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone dimers (6-4 PPs). The anthocyanin concentrations were significantly higher in the UVA + high UVB treatment than the other groups. The ELISA resultsshowed that a difference occurred between the control and the treatments of UVA, UVA+low UVB and UVA+high UVB for CPDs and between the control and the UVB treatments for 6-4 PPs. Anthocyanins accumulated with increased UV exposure. However, additional research is needed to determine the significance of anthocyanins in the adventitious root tips of S. wrightii
- …
