3,116 research outputs found
Functionalization of Pyrene To Prepare Luminescent Materials—Typical Examples of Synthetic Methodology
Pyrene-based π-conjugated materials are considered to be an ideal organic electro-luminescence material for application in semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), and so forth. However, the great drawback of employing pyrene as an organic luminescence material is the formation of excimer emission, which quenches the efficiency at high concentration or in the solid-state. Thus, in order to obtain highly efficient optical devices, scientists have devoted much effort to tuning the structure of pyrene derivatives in order to realize exploitable properties by employing two strategies, 1) introducing a variety of moieties at the pyrene core, and 2) exploring effective and convenient synthetic strategies to functionalize the pyrene core. Over the past decades, our group has mainly focused on synthetic methodologies for functionalization of the pyrene core; we have found that formylation/acetylation or bromination of pyrene can selectly lead to functionalization at K-region by Lewis acid catalysis. Herein, this Minireview highlights the direct synthetic approaches (such as formylation, bromination, oxidation, and de-tert-butylation reactions, etc.) to functionalize the pyrene in order to advance research on luminescent materials for organic electronic applications. Further, this article demonstrates that the future direction of pyrene chemistry is asymmetric functionalization of pyrene for organic semiconductor applications and highlights some of the classical asymmetric pyrenes, as well as the latest breakthroughs. In addition, the photophysical properties of pyrene-based molecules are briefly reviewed. To give a current overview of the development of pyrene chemistry, the review selectively covers some of the latest reports and concepts from the period covering late 2011 to the present day
Extended π-conjugated pyrene derivatives: structural, photophysical and electrochemical properties
This article presents a set of extended π-conjugated pyrene derivatives, namely 1,3-di(arylethynyl)-7-tert-butylpyrenes, which were synthesized by a Pd-catalyzed Sonogashira coupling reaction of 1,3-dibromo-7-tert-butylpyrenes with the corresponding arylethynyl group in good yields. Despite the presence of the tert-butyl group located at the 7-position of pyrene, X-ray crystallographic analyses show that the planarity of the Y-shaped molecules still exhibits strong face-to-face π-π stacking in the solid state; all of the compounds exhibit blue or green emission with high quantum yields (QYs) in dichloromethane. DFT calculations and electrochemistry revealed that this category of compound possesses hole-transporting characteristics. In addition, with strong electron-donating (-N(CH₃)₂) or electron-withdrawing (-CHO) groups in 2 d or 2 f, these molecules displayed efficient intramolecular charge-transfer (ICT) emissions with solvatochromic shifts from blue to yellow (green) on increasing the solvent polarity. Furthermore, the compounds 2 d and 2 f possess strong CT characteristics
Identifying (BN)2-pyrene as a new class of singlet fission chromophores: significance of azaborine substitution
Singlet fission converts one photoexcited singlet state to two triplet excited states and raises photoelectric conversion efficiency in photovoltaic devices. However, only a handful of chromophores have been known to undergo this process, which greatly limits the application of singlet fission in photovoltaics. We hereby identify a recently synthesized diazadiborine-pyrene ((BN)2-pyrene) as a singlet fission chromophore. Theoretical calculations indicate that it satisfies the thermodynamics criteria for singlet fission. More importantly, the calculations provide a physical chemistry insight into how the BN substitution makes this happen. Both calculation and transient absorption spectroscopy experiment indicate that the chromophore has a better absorption than pentacene. The convenient synthesis pathway of the (BN)2-pyrene suggests an in situ chromophore generation in photovoltaic devices. Two more (BN)2-pyrene isomers are proposed as singlet fission chromophores. This study sets a step forward in the cross-link of singlet fission and azaborine chemistry
Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions
A pyrene-appended ratiometric fluorescent chemosensor L based on a synthetic approach of insulating the fluorophore from the ionophore by a specific molecular spacer has been synthesised and characterised. The fluorescence spectra changes of L suggested that the chemosensor can detect heavy and transition metal (HTM) ions ratiometrically and with variable sensitivity according to the substituents present. ¹H NMR titration experiments indicated that the three triazole ligands prefer binding with Hg²⁺, Pb²⁺ and Zn²⁺, resulting in a conformational change that produces monomer emission of the pyrene accompanied by the excimer quenching. However, the addition of Fe³⁺, which may be accommodated by the cavity of L, makes the pyrene units move closer to each other, and a discernible increase in the emission intensity of the static excimer is observed. Therefore, it is believed that the ditopic scaffold of the calix[3]arene as a specific molecular spacer here plays an important role in the blocking of the heavy atom effect of HTM ions by insulating the fluorophore from the ionophore given the long distance between the metal cation and the pyrene moiety
Characterization of seediness attributes of blackberry genotypes
Fresh market blackberries can feel “seedy” when consumed. This “seediness” is associated with the presence of pyrenes which are comprised of a single seed enclosed in an endocarp. Small pyrene size
Regio-selective substitution at the 1,3- and 6,8-positions of pyrene for the construction of small dipolar molecules
© 2015 American Chemical Society. This article presents a novel asymmetrical functionalization strategy for the construction of dipolar molecules via efficient regioselective functionalization along the Z-axis of pyrene at both the 1,3- and 6,8-positions. Three asymmetrical ly substituted 1,3-diphenyl-6,8-R-disubsituted pyrenes were fully characterized by X-ray crystallography, photophysical properties, electrochemistry, and density functional theory calculations
Enhanced seed germination of Ilex dumosa R. (Aquifoliaceae) through in vitro culture of cut pyrenes
An in vitro culture protocol was developed that increased the germination percentage and decreased the lag time to germination for Ilex dumosa R. pyrenes as a tool for replacing the laborious task of embryo rescue technique. This method involves transversely cutting surface-sterilized pyrenes with a scalpel blade, then placing the micropylar one-third end with the rudimentary embryo (0.25 mm long) on solidified (agar 0.65%) quarter-strength salts and vitamins of Murashige and Skoog, 1962 medium with 3% sucrose, and incubating in a growth room at 27 ± 2 8C with a 14-h photoperiod (116 mmolm?2 s?1). Most of the cut pyrenes (greater than 50%) germinated within the first month after inoculation and achieved maximum germination (70%) in 2 months compared with whole pyrenes, which began to germinate 3 months after sowing and required more than 8 months for maximum germination (37%). Moreover, the germination percentage of cut pyrenes was significantly higher than the germination of isolated embryos (34%). Thus, the cut pyrenes culture is a simpler and more effective technique than embryo rescue. Easily, on average, a trained operator is able to culture ~1000 cut pyrenes per day instead of ~100 isolated embryos.Fil: Dolce, Natalia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; ArgentinaFil: Mroginski, Luis Amado. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; ArgentinaFil: Rey, Hebe Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentin
Identifying Consumer Perceptions of Fresh-market Blackberries
Blackberries are grown worldwide for commercial fresh markets, but there is limited information on consumer perceptions of this fruit. In this study, physiochemical and consumer sensory attributes of three Arkansas-grown fresh-market blackberry genotypes were evaluated and consumer perceptions of fresh-market blackberries were also investigated though an online survey. Two cultivars (Natchez and Ouachita) and one advanced selection (A-2418) were evaluated for compositional and nutraceutical analysis and consumer sensory analysis. Natchez had the highest berry weight, length, drupelets and pyrenes/berry, and pyrene weight/berry. Ouachita had the highest soluble solids content (11.9%), pH (3.18) and soluble solids/titratable acidity ratio (10.92). There were no significant differences between genotypes for titratable acidity, organic acids, sugars, and most of the nutraceuticals. In a sensory panel (n = 80) of these genotypes, consumers rated Natchez highest in overall impression, overall flavor, and sweetness, and Natchez was ranked as the most liked blackberry more often than Ouachita or A-2418 on a 9-point verbal hedonic liking scale and 5-point Just About Right scale. An online consumer survey (n = 879) was done to gain information on consumers’ opinions and habits relating to fresh-market blackberries. Results indicated the most important factors to influence blackberry purchases are the freshness of the berries, the type and size of package, the uniformity of berry color, and the price. Results also suggested consumers prefer larger sized blackberries and blackberries with an oblong shape. Identifying marketability attributes of fresh-market blackberries helps provide information to advance breeding efforts for fruit with commercial potential
Functionalized hyperbranched polymers via olefin metathesis
Hyperbranched polymers are highly branched, three-dimensional
macromolecules which are closely related to dendrimers
and are typically prepared via a one-pot polycondensation of
AB_(n≥2) monomers.^1 Although hyperbranched macromolecules
lack the uniformity of monodisperse dendrimers, they still
possess many attractive dendritic features such as good solubility,
low solution viscosity, globular structure, and multiple end
groups.^1-3 Furthermore, the usually inexpensive, one-pot synthesis
of these polymers makes them particularly desirable
candidates for bulk-material and specialty applications. Toward
this end, hyperbranched polymers have been investigated as both
rheology-modifying additives to conventional polymers and as
substrate-carrying supports or multifunctional macroinitiators,
where a large number of functional sites within a compact space
becomes beneficial
Assessment of Polycyclic Aromatic Hydrocarbon Contamination of Breeding Pools Utilized by the Puerto Rican Crested Toad, Peltophryne lemur.
Habitat preservation and management may play an important role in the conservation of the Puerto Rican crested toad, Peltophryne lemur, due to this species' small geographic range and declining native wild population. Bioavailable water concentrations of Polycyclic Aromatic Hydrocarbon (PAH) contaminants within breeding pools at 3 sites were established using Passive Sampling Devices (PSDs) and gas chromatography-mass spectrometry (GC/MS). A more diverse population of PAH analytes were found in higher concentrations at the breeding site that allowed direct vehicular access, but calculated risk quotients indicated low risk to toad reproduction associated with the current PAH analyte levels
- …
