79,256 research outputs found
Functionalization of Pyrene To Prepare Luminescent Materials—Typical Examples of Synthetic Methodology
Pyrene-based π-conjugated materials are considered to be an ideal organic electro-luminescence material for application in semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), and so forth. However, the great drawback of employing pyrene as an organic luminescence material is the formation of excimer emission, which quenches the efficiency at high concentration or in the solid-state. Thus, in order to obtain highly efficient optical devices, scientists have devoted much effort to tuning the structure of pyrene derivatives in order to realize exploitable properties by employing two strategies, 1) introducing a variety of moieties at the pyrene core, and 2) exploring effective and convenient synthetic strategies to functionalize the pyrene core. Over the past decades, our group has mainly focused on synthetic methodologies for functionalization of the pyrene core; we have found that formylation/acetylation or bromination of pyrene can selectly lead to functionalization at K-region by Lewis acid catalysis. Herein, this Minireview highlights the direct synthetic approaches (such as formylation, bromination, oxidation, and de-tert-butylation reactions, etc.) to functionalize the pyrene in order to advance research on luminescent materials for organic electronic applications. Further, this article demonstrates that the future direction of pyrene chemistry is asymmetric functionalization of pyrene for organic semiconductor applications and highlights some of the classical asymmetric pyrenes, as well as the latest breakthroughs. In addition, the photophysical properties of pyrene-based molecules are briefly reviewed. To give a current overview of the development of pyrene chemistry, the review selectively covers some of the latest reports and concepts from the period covering late 2011 to the present day
Identifying (BN)2-pyrene as a new class of singlet fission chromophores: significance of azaborine substitution
Singlet fission converts one photoexcited singlet state to two triplet excited states and raises photoelectric conversion efficiency in photovoltaic devices. However, only a handful of chromophores have been known to undergo this process, which greatly limits the application of singlet fission in photovoltaics. We hereby identify a recently synthesized diazadiborine-pyrene ((BN)2-pyrene) as a singlet fission chromophore. Theoretical calculations indicate that it satisfies the thermodynamics criteria for singlet fission. More importantly, the calculations provide a physical chemistry insight into how the BN substitution makes this happen. Both calculation and transient absorption spectroscopy experiment indicate that the chromophore has a better absorption than pentacene. The convenient synthesis pathway of the (BN)2-pyrene suggests an in situ chromophore generation in photovoltaic devices. Two more (BN)2-pyrene isomers are proposed as singlet fission chromophores. This study sets a step forward in the cross-link of singlet fission and azaborine chemistry
Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions
A pyrene-appended ratiometric fluorescent chemosensor L based on a synthetic approach of insulating the fluorophore from the ionophore by a specific molecular spacer has been synthesised and characterised. The fluorescence spectra changes of L suggested that the chemosensor can detect heavy and transition metal (HTM) ions ratiometrically and with variable sensitivity according to the substituents present. ¹H NMR titration experiments indicated that the three triazole ligands prefer binding with Hg²⁺, Pb²⁺ and Zn²⁺, resulting in a conformational change that produces monomer emission of the pyrene accompanied by the excimer quenching. However, the addition of Fe³⁺, which may be accommodated by the cavity of L, makes the pyrene units move closer to each other, and a discernible increase in the emission intensity of the static excimer is observed. Therefore, it is believed that the ditopic scaffold of the calix[3]arene as a specific molecular spacer here plays an important role in the blocking of the heavy atom effect of HTM ions by insulating the fluorophore from the ionophore given the long distance between the metal cation and the pyrene moiety
Controlling the Decoration of the Reduced Graphene Oxide Surface with Pyrene-Functionalized Gold Nanoparticles
We exploited a non‐covalent approach based on π‐stacking interactions to
address the formation of hybrids between pyrene‐functionalized gold
nanoparticles (PyAuNPs) and reduced graphene oxide (RGO), in which the former
are distributed homogeneously on the surface of the latter with a high degree
of coverage. We used water soluble PyAuNPs of two different average
dimensions, namely 2 and 8 nm, in which the pendant pyrene moieties were
introduced within a mixed monolayer with a choline derivative. The combination
with RGO originates highly insoluble materials, in which microscopy evidences
a complete adhesion of the PyAuNPs onto the carbon nanomaterial layers in a
highly homogeneous fashion, with no traces of free particles, confirming the
high affinity between pyrene‐functionalized species and conjugated carbon
nanostructure surfaces
Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry
Context. Icy dust grains play an important role in the formation of complex
inter- and circumstellar molecules. Observational studies show that polycyclic
aromatic hydrocarbons (PAHs) are abundantly present in the ISM in the gas
phase. It is likely that these non-volatile species freeze out onto dust grains
as well and participate in the astrochemical solid-state network, but
experimental PAH ice studies are largely lacking. Methods. Near UV/VIS
spectroscopy is used to track the in situ VUV driven photochemistry of pyrene
containing ices at temperatures ranging from 10 to 125 K. Results. The main
photoproducts of VUV photolyzed pyrene ices are spectroscopically identified
and their band positions are listed for two host ices, \water and CO. Pyrene
ionisation is found to be most efficient in \water ices at low temperatures.
The reaction products, triplet pyrene and the 1-hydro-1-pyrenyl radical are
most efficiently formed in higher temperature water ices and in low temperature
CO ice. Formation routes and band strength information of the identified
species are discussed. Additionally, the oscillator strengths of Py, Py^+ and
PyH are derived and a quantitative kinetic analysis is performed by fitting a
chemical reaction network to the experimental data. Conclusions. Pyrene is
efficiently ionised in water ice at temperatures below 50 K. Hydrogenation
reactions dominate the chemistry in low temperature CO ice with trace amounts
of water. The results are put in an astrophysical context by determining the
importance of PAH ionisation in a molecular cloud. The photoprocessing of a
sample PAH in ice described in this manuscript indicates that PAH
photoprocessing in the solid state should also be taken into account in
astrochemical models.Comment: 11 pages, 8 figures, accepted for publication in A&
Synthesis, characterization and ethylene polymerization behaviour of binuclear nickel halides bearing 4,5,9,10-tetra(arylimino)pyrenylidenes
Pyrene-4,5,9,10-tetraone was prepared via the oxidation of pyrene, and reacted with various anilines to afford a series of 4,5,9,10-tetra(arylimino)pyrenylidene derivatives (L1–L4). The tetraimino-pyrene compounds L1 and L2 were reacted with two equivalents of (DME)NiBr₂ in CH₂Cl₂ to afford the corresponding dinickel bromide complexes (Ni1 and Ni2). The organic compounds were fully characterized, whilst the bi-metallic complexes were characterized by FT-IR spectra and elemental analysis. The molecular structures of representative organic and nickel compounds were confirmed by single-crystal X-ray diffraction studies. These nickel complexes exhibited high activities towards ethylene polymerization in the presence of either MAO or Me₂AlCl, maintaining a high activity over a prolonged period (longer than previously reported dinickel complex pre-catalysts). The polyethylene obtained was characterized by GPC, DSC and FT-IR spectroscopy and was found to possess branched features
Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices
Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3
microns) from the gas phase interstellar medium have long been attributed to
polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the
Milky Way's carbon reservoir is locked in PAH molecules, which makes their
characterization integral to our understanding of astrochemistry. In molecular
clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs
are expected to be frozen in the icy mantles of dust grains where they should
reveal themselves through infrared absorption. To facilitate the search for
frozen interstellar PAHs, laboratory experiments were conducted to determine
the positions and strengths of the bands of pyrene mixed with H2O and D2O ices.
The D2O mixtures are used to measure pyrene bands that are masked by the strong
bands of H2O, leading to the first laboratory determination of the band
strength for the CH stretching mode of pyrene in water ice near 3.25 microns.
Our infrared band strengths were normalized to experimentally determined
ultraviolet band strengths, and we find that they are generally ~50% larger
than those reported by Bouwman et al. based on theoretical strengths. These
improved band strengths were used to reexamine YSO spectra published by Boogert
et al. to estimate the contribution of frozen PAHs to absorption in the 5-8
micron spectral region, taking into account the strength of the 3.25 micron CH
stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the
cosmic carbon budget, and account for 2%-9% of the unidentified absorption in
the 5-8 micron region.Comment: Accepted for publication in ApJ on 14 Feb 201
Extended π-conjugated pyrene derivatives: structural, photophysical and electrochemical properties
This article presents a set of extended π-conjugated pyrene derivatives, namely 1,3-di(arylethynyl)-7-tert-butylpyrenes, which were synthesized by a Pd-catalyzed Sonogashira coupling reaction of 1,3-dibromo-7-tert-butylpyrenes with the corresponding arylethynyl group in good yields. Despite the presence of the tert-butyl group located at the 7-position of pyrene, X-ray crystallographic analyses show that the planarity of the Y-shaped molecules still exhibits strong face-to-face π-π stacking in the solid state; all of the compounds exhibit blue or green emission with high quantum yields (QYs) in dichloromethane. DFT calculations and electrochemistry revealed that this category of compound possesses hole-transporting characteristics. In addition, with strong electron-donating (-N(CH₃)₂) or electron-withdrawing (-CHO) groups in 2 d or 2 f, these molecules displayed efficient intramolecular charge-transfer (ICT) emissions with solvatochromic shifts from blue to yellow (green) on increasing the solvent polarity. Furthermore, the compounds 2 d and 2 f possess strong CT characteristics
Analysis of benzo(a)pyrene in airborne particulates by gas chromatography
A routine method was developed to measure benzo(a)pyrene in airborne particulates. Samples were collected on a filter and the organic portion was extracted with cyclohexane. The polynuclear hydrocarbon (PNHC) fraction was separated from the aliphatics by column chromatography. An internal standard was added to the extract and a portion of it was injected into a gas chromatograph. Although the gas chromatographic method has often been reported in the literature, satisfactory separation of benzo(a)pyrene and benzo(e)pyrene has not been achieved. With the introduction of a nematic liquid crystal as the stationary phase good separation is now possible
Functionalized hyperbranched polymers via olefin metathesis
Hyperbranched polymers are highly branched, three-dimensional
macromolecules which are closely related to dendrimers
and are typically prepared via a one-pot polycondensation of
AB_(n≥2) monomers.^1 Although hyperbranched macromolecules
lack the uniformity of monodisperse dendrimers, they still
possess many attractive dendritic features such as good solubility,
low solution viscosity, globular structure, and multiple end
groups.^1-3 Furthermore, the usually inexpensive, one-pot synthesis
of these polymers makes them particularly desirable
candidates for bulk-material and specialty applications. Toward
this end, hyperbranched polymers have been investigated as both
rheology-modifying additives to conventional polymers and as
substrate-carrying supports or multifunctional macroinitiators,
where a large number of functional sites within a compact space
becomes beneficial
- …
