1,504 research outputs found

    Transductions Computed by One-Dimensional Cellular Automata

    Full text link
    Cellular automata are investigated towards their ability to compute transductions, that is, to transform inputs into outputs. The families of transductions computed are classified with regard to the time allowed to process the input and to compute the output. Since there is a particular interest in fast transductions, we mainly focus on the time complexities real time and linear time. We first investigate the computational capabilities of cellular automaton transducers by comparing them to iterative array transducers, that is, we compare parallel input/output mode to sequential input/output mode of massively parallel machines. By direct simulations, it turns out that the parallel mode is not weaker than the sequential one. Moreover, with regard to certain time complexities cellular automaton transducers are even more powerful than iterative arrays. In the second part of the paper, the model in question is compared with the sequential devices single-valued finite state transducers and deterministic pushdown transducers. It turns out that both models can be simulated by cellular automaton transducers faster than by iterative array transducers.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    On undecidability results of real programming languages

    Get PDF
    Original article can be found at : http://www.vmars.tuwien.ac.at/ Copyright Institut fur Technische InformatikOften, it is argued that some problems in data-flow analysis such as e.g. worst case execution time analysis are undecidable (because the halting problem is) and therefore only a conservative approximation of the desired information is possible. In this paper, we show that the semantics for some important real programming languages – in particular those used for programming embedded devices – can be modeled as finite state systems or pushdown machines. This implies that the halting problem becomes decidable and therefore invalidates popular arguments for using conservative analysis

    A Note on Limited Pushdown Alphabets in Stateless Deterministic Pushdown Automata

    Full text link
    Recently, an infinite hierarchy of languages accepted by stateless deterministic pushdown automata has been established based on the number of pushdown symbols. However, the witness language for the n-th level of the hierarchy is over an input alphabet with 2(n-1) elements. In this paper, we improve this result by showing that a binary alphabet is sufficient to establish this hierarchy. As a consequence of our construction, we solve the open problem formulated by Meduna et al. Then we extend these results to m-state realtime deterministic pushdown automata, for all m at least 1. The existence of such a hierarchy for m-state deterministic pushdown automata is left open
    • …
    corecore