107,808 research outputs found

    Associations between purine metabolites and clinical symptoms in schizophrenia

    Get PDF
    Background: The antioxidant defense system, which is known to be dysregulated in schizophrenia, is closely linked to the dynamics of purine pathway. Thus, alterations in the homeostatic balance in the purine pathway may be involved in the pathophysiology of schizophrenia. Methodology/Principal Findings: Breakdown products in purine pathway were measured using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system for 25 first-episode neuroleptic-naïve patients with schizophrenia at baseline and at 4-weeks following initiation of treatment with antipsychotic medication. Associations between these metabolites and clinical and neurological symptoms were examined at both time points. The ratio of uric acid and guanine measured at baseline predicted clinical improvement following four weeks of treatment with antipsychotic medication. Baseline levels of purine metabolites also predicted clinical and neurological symtpoms recorded at baseline; level of guanosine was associated with degree of clinical thought disturbance, and the ratio of xanthosine to guanosine at baseline predicted degree of impairment in the repetition and sequencing of actions. Conclusions/Significance: Findings suggest an association between optimal levels of purine byproducts and dynamics in clinical symptoms and adjustment, as well as in the integrity of sensory and motor processing. Taken together, alterations in purine catabolism may have clinical relevance in schizophrenia pathology

    Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    Get PDF
    Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium

    Biosensor measurement of purine release from cerebellar cultures and slices

    Get PDF
    We have previously described an action-potential and Ca2+-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whether cultured granule cells (from postnatal day 7–8 rats) can release adenosine. Although no purine release could be detected in response to focal electrical stimulation, purine (adenosine, inosine or hypoxanthine) release occurred in response to an increase in extracellular K+ concentration from 3 to 25 mM coupled with addition of 1 mM glutamate. The mechanism of purine release was transport from the cytoplasm via an ENT transporter. This process did not require action-potential firing but was Ca2+dependent. The major purine released was not adenosine, but was either inosine or hypoxanthine. In order for inosine/hypoxanthine release to occur, cultures had to contain both granule cells and glial cells; neither cellular component was sufficient alone. Using the same stimulus in cerebellar slices (postnatal day 7–25), it was possible to release purines. The release however was not blocked by ENT blockers and there was a shift in the Ca2+ dependence during development. This data from cultures and slices further illustrates the complexities of purine release, which is dependent on cellular composition and developmental stage

    Role of HIV RNA structure in recombination and speciation: romping in purine A, keeps HTLV away

    Full text link
    Extreme enrichment of the human immunodeficiency virus (HIV-1) RNA genome for the purine A parallels the mild purine-loading of the RNAs of most organisms. This should militate against loop-loop "kissing" interactions between the structured viral genome and structured host RNAs, which can generate segments of double-stranded RNA sufficient to trigger intracellular alarms. However, human T cell leukaemia virus (HTLV-1), with the potential to invade the same host cell, shows extreme enrichment for the pyrimidine C. Assuming the low GC% HIV and the high GC% HTLV-1 to share a common ancestor, it was postulated that differences in GC% arose to prevent homologous recombination between these emerging lentiviral species. Sympatrically isolated by this intracellular reproductive barrier, prototypic HIV-1 seized the AU-rich (low GC%) high ground (thus committing to purine A rather than purine G). Prototypic HTLV-1 forwent this advantage and evolved an independent evolutionary strategy. Evidence supporting this hypothesis since its elaboration in the 1990s is growing. The conflict between the needs to encode accurately both a protein, and nucleic acid structure, is often resolved in favour of the nucleic acid because, apart from regulatory roles, structure is critical for recombination. However, above a sequence difference threshold, structure (and hence recombination) is impaired. New species can then arise.Comment: Initially submitted to the Journal of Theoretical Biology 27th November 201

    Phosphorylation of purine and pyrimidine nucleosides by isolated rat liver mitochondria

    Get PDF
    Formation of 5'-AMP, 5'-GMP, 5'-CMP and 5'UMP was confirmed in isolated rat liver mitochondria incubated with alpha-ketoglutarate, inorganic phosphate, purine nucleoside and pyrimidine nucleoside. Increased incorporation of 32Pi into ATP, GTP and UTP was observed by adding purine- and pyrimidine nucleosides. The phosphorylation of nucleosides was inhibited severely by arsenite and affected slightly by the addition of nuclear or post-mitochondrial fraction.</p

    Transiently Transfected Purine Biosynthetic Enzymes Form Stress Bodies

    Get PDF
    It has been hypothesized that components of enzymatic pathways might organize into intracellular assemblies to improve their catalytic efficiency or lead to coordinate regulation. Accordingly, de novo purine biosynthesis enzymes may form a purinosome in the absence of purines, and a punctate intracellular body has been identified as the purinosome. We investigated the mechanism by which human de novo purine biosynthetic enzymes might be organized into purinosomes, especially under differing cellular conditions. Irregardless of the activity of bodies formed by endogenous enzymes, we demonstrate that intracellular bodies formed by transiently transfected, fluorescently tagged human purine biosynthesis proteins are best explained as protein aggregation.This work was supported by grants from the United States National Institutes of Health, National Science Foundation, and Welch (F1515) and Packard Foundations to EMM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular Biolog

    Infection of Soybean and Pea Nodules by \u3cem\u3eRhizobium\u3c/em\u3e spp. Purine Auxotrophs in the Presence of 5-aminoimidazole-4-Carboxamide Riboside

    Get PDF
    Purine auxotrophs of various Rhizobium species are symbiotically defective, usually unable to initiate or complete the infection process. Earlier studies demonstrated that, in the Rhizobium etli-bean symbiosis, infection by purine auxotrophs is partially restored by supplementation of the plant medium with 5-amino-imidazole-4-carboxamide (AICA) riboside, the unphosphorylated form of the purine biosynthetic intermediate AICAR. The addition of purine to the root environment does not have this effect. In this study, purine auxotrophs of Rhizobium fredii HH303 and Rhizobium leguminosarum 128C56 (bv. viciae) were examined. Nutritional and genetic characterization indicated that each mutant was blocked in purine biosynthesis prior to the production of AICAR. R. fredii HH303 and R. leguminosarum 128C56 appeared to be deficient in AICA riboside transport and/or conversion into AICAR, and the auxotrophs derived from them grew very poorly with AICA riboside as a purine source. All of the auxotrophs elicited poorly developed, uninfected nodules on their appropriate hosts. On peas, addition of AICA riboside or purine to the root environment led to enhanced nodulation; however, infection threads were observed only in the presence of AICA riboside. On soybeans, only AICA riboside was effective in enhancing nodulation and promoting infection. Although AICA riboside supplementation of the auxotrophs led to infection thread development on both hosts, the numbers of bacteria recovered from the nodules were still 2 or more orders of magnitude lower than in fully developed nodules populated by wild-type bacteria. The ability to AICA riboside to promote infection by purine auxotrophs, despite serving as a very poor purine source for these strains, supports the hypothesis that AICAR plays a role in infection other than merely promoting bacterial growth
    corecore