1,130 research outputs found

    Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure

    Full text link
    We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of (pure Nash) equilibria is guaranteed by potential function arguments. Unfortunately, this proof of existence is inefficient and computing equilibria is such games is a {\sf PLS}-hard problem. The situation gets worse when superlinear latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and equilibria may not even exist. Given these obstacles, we consider approximate equilibria as alternative solution concepts. Do such equilibria exist? And if so, can we compute them efficiently? We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ\Psi-games. This allows us to show that these games have d!d!-approximate equilibria, where dd is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate equilibria when dd is a constant. For games with linear latency functions, the approximation guarantee is 3+52+O(γ)\frac{3+\sqrt{5}}{2}+O(\gamma) for arbitrarily small γ>0\gamma>0; for latency functions with maximum degree d2d\geq 2, it is d2d+o(d)d^{2d+o(d)}. The running time is polynomial in the number of bits in the representation of the game and 1/γ1/\gamma. As a byproduct of our techniques, we also show the following structural statement for weighted congestion games with polynomial latency functions of maximum degree d2d\geq 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)d^{O(d^2)}-approximate equilibrium exist and can be efficiently identified in such games as long as dd is constant.Comment: 31 page

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Resource Competition on Integral Polymatroids

    Full text link
    We study competitive resource allocation problems in which players distribute their demands integrally on a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a nondecreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.Comment: 17 page

    Joint strategy fictitious play with inertia for potential games

    Get PDF
    We consider multi-player repeated games involving a large number of players with large strategy spaces and enmeshed utility structures. In these ldquolarge-scalerdquo games, players are inherently faced with limitations in both their observational and computational capabilities. Accordingly, players in large-scale games need to make their decisions using algorithms that accommodate limitations in information gathering and processing. This disqualifies some of the well known decision making models such as ldquoFictitious Playrdquo (FP), in which each player must monitor the individual actions of every other player and must optimize over a high dimensional probability space. We will show that Joint Strategy Fictitious Play (JSFP), a close variant of FP, alleviates both the informational and computational burden of FP. Furthermore, we introduce JSFP with inertia, i.e., a probabilistic reluctance to change strategies, and establish the convergence to a pure Nash equilibrium in all generalized ordinal potential games in both cases of averaged or exponentially discounted historical data. We illustrate JSFP with inertia on the specific class of congestion games, a subset of generalized ordinal potential games. In particular, we illustrate the main results on a distributed traffic routing problem and derive tolling procedures that can lead to optimized total traffic congestion

    Computing Approximate Equilibria in Weighted Congestion Games via Best-Responses

    Full text link
    We present a deterministic polynomial-time algorithm for computing dd+o(d)d^{d+o(d)}-approximate (pure) Nash equilibria in weighted congestion games with polynomial cost functions of degree at most dd. This is an exponential improvement of the approximation factor with respect to the previously best deterministic algorithm. An appealing additional feature of our algorithm is that it uses only best-improvement steps in the actual game, as opposed to earlier approaches that first had to transform the game itself. Our algorithm is an adaptation of the seminal algorithm by Caragiannis et al. [FOCS'11, TEAC 2015], but we utilize an approximate potential function directly on the original game instead of an exact one on a modified game. A critical component of our analysis, which is of independent interest, is the derivation of a novel bound of [d/W(d/ρ)]d+1[d/\mathcal{W}(d/\rho)]^{d+1} for the Price of Anarchy (PoA) of ρ\rho-approximate equilibria in weighted congestion games, where W\mathcal{W} is the Lambert-W function. More specifically, we show that this PoA is exactly equal to Φd,ρd+1\Phi_{d,\rho}^{d+1}, where Φd,ρ\Phi_{d,\rho} is the unique positive solution of the equation ρ(x+1)d=xd+1\rho (x+1)^d=x^{d+1}. Our upper bound is derived via a smoothness-like argument, and thus holds even for mixed Nash and correlated equilibria, while our lower bound is simple enough to apply even to singleton congestion games

    Sharing Non-Anonymous Costs of Multiple Resources Optimally

    Full text link
    In cost sharing games, the existence and efficiency of pure Nash equilibria fundamentally depends on the method that is used to share the resources' costs. We consider a general class of resource allocation problems in which a set of resources is used by a heterogeneous set of selfish users. The cost of a resource is a (non-decreasing) function of the set of its users. Under the assumption that the costs of the resources are shared by uniform cost sharing protocols, i.e., protocols that use only local information of the resource's cost structure and its users to determine the cost shares, we exactly quantify the inefficiency of the resulting pure Nash equilibria. Specifically, we show tight bounds on prices of stability and anarchy for games with only submodular and only supermodular cost functions, respectively, and an asymptotically tight bound for games with arbitrary set-functions. While all our upper bounds are attained for the well-known Shapley cost sharing protocol, our lower bounds hold for arbitrary uniform cost sharing protocols and are even valid for games with anonymous costs, i.e., games in which the cost of each resource only depends on the cardinality of the set of its users

    Network Topology and Equilibrium Existence in Weighted Network Congestion Games

    Get PDF
    Every finite noncooperative game can be presented as a weighted network congestion game, and also as a network congestion game with player-specific costs. In the first presentation, different players may contribute differently to congestion, and in the second, they are differently (negatively) affected by it. This paper shows that the topology of the underlying (undirected two-terminal) network provides information about the existence of pure-strategy Nash equilibrium in the game. For some networks, but not for others, every corresponding game has at least one such equilibrium. For the weighted presentation, a complete characterization of the networks with this property is given. The necessary and sufficient condition is that the network has at most three routes that do traverse any edge in opposite directions, or it consists of several such networks connected in series. The corresponding problem for player-specific costs remains open.Congestion games, network topology, existence of equilibrium

    Weighted Congestion Games With Separable Preferences

    Get PDF
    Players in a congestion game may differ from one another in their intrinsic preferences (e.g., the benefit they get from using a specific resource), their contribution to congestion, or both. In many cases of interest, intrinsic preferences and the negative effect of congestion are (additively or multiplicatively) separable. This paper considers the implications of separability for the existence of pure-strategy Nash equilibrium and the prospects of spontaneous convergence to equilibrium. It is shown that these properties may or may not be guaranteed, depending on the exact nature of player heterogeneity.congestion games, separable preferences, pure equilibrium, finite improvement property, potential.
    corecore