108 research outputs found

    Nested turbo codes for the costa problem

    Get PDF
    Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively

    High Speed Turbo Tcm Ofdm For Uwb And Powerline System

    Get PDF
    Turbo Trellis-Coded Modulation (TTCM) is an attractive scheme for higher data rate transmission, since it combines the impressive near Shannon limit error correcting ability of turbo codes with the high spectral efficiency property of TCM codes. We build a punctured parity-concatenated trellis codes in which a TCM code is used as the inner code and a simple parity-check code is used as the outer code. It can be constructed by simple repetition, interleavers, and TCM and functions as standard TTCM but with much lower complexity regarding real world implementation. An iterative bit MAP decoding algorithm is associated with the coding scheme. Orthogonal Frequency Division Multiplexing (OFDM) modulation has been a promising solution for efficiently capturing multipath energy in highly dispersive channels and delivering high data rate transmission. One of UWB proposals in IEEE P802.15 WPAN project is to use multi-band OFDM system and punctured convolutional codes for UWB channels supporting data rate up to 480Mb/s. The HomePlug Networking system using the medium of power line wiring also selects OFDM as the modulation scheme due to its inherent adaptability in the presence of frequency selective channels, its resilience to jammer signals, and its robustness to impulsive noise in power line channel. The main idea behind OFDM is to split the transmitted data sequence into N parallel sequences of symbols and transmit on different frequencies. This structure has the particularity to enable a simple equalization scheme and to resist to multipath propagation channel. However, some carriers can be strongly attenuated. It is then necessary to incorporate a powerful channel encoder, combined with frequency and time interleaving. We examine the possibility of improving the proposed OFDM system over UWB channel and HomePlug powerline channel by using our Turbo TCM with QAM constellation for higher data rate transmission. The study shows that the system can offer much higher spectral efficiency, for example, 1.2 Gbps for OFDM/UWB which is 2.5 times higher than the current standard, and 39 Mbps for OFDM/HomePlug1.0 which is 3 times higher than current standard. We show several essential requirements to achieve high rate such as frequency and time diversifications, multi-level error protection. Results have been confirmed by density evolution. The effect of impulsive noise on TTCM coded OFDM system is also evaluated. A modified iterative bit MAP decoder is provided for channels with impulsive noise with different impulsivity

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Physical layer secrecy channel coding

    Get PDF
    Wireless communications is expanding and becoming an indispensable part of our daily life. However, due to its channel open nature, it is more vulnerable to attacks, such as eavesdropping and jamming which jeopardize the confidentiality of wireless data, compared to its counter-part, wireline communications. Security in wireless communication is thus a very important factor that should be perfected to accommodate the rapid growth of wireless communication today. Motivated by information theoretic secrecy definitions, we adopt a simple way to define the secrecy of a system by looking at its Bit-Error-Rate (BER) curves, the correlation of error vectors and Log Likelihood Ratios (LLRs) of the decoded information bits. The information bit errors and LLRs of a physical layer secure system should be uncorrelated and the BER curve should have an acceptable sharp transition from high to low BERs at prescribed signal to noise ratio (SNR) thresholds. We study catastrophic codes and Serial Concatenated Convolutional Codes (SCCC) as two candidates. For the former, we provide both detailed analytical and simulation results, to demonstrate how we can change the encoding parameters to make the resulting BER curves have the intended properties. For SCCC, we study two options. One is having a catastrophic code as an inner code. The other is to use regular SCCC. Several approaches are proposed to change the shape of the resulting BER curves. In addition, the correlation present in their information bit errors and LLRs are investigated to see how it can be used to detect or even correct errors. We find that regular SCCC codes have strong correlation in their error vectors which is captured by the associated LLRs. In low SNR regions, eavesdropper can easily make reliable decisions on which packets to drop based on LLRs, which thus undermines the security of the main channel data. On the other hand, by selecting proper outer codes, SCCC with catastrophic encoder does not have such a weakness. We conclude that Catastrophic convolutional codes, as well as serial concatenated catastrophic codes have desired properties. Therefore, they can be considered promising approaches to achieving practical secrecy in wireless systems
    corecore