2,050 research outputs found

    An infinite genus mapping class group and stable cohomology

    Full text link
    We exhibit a finitely generated group \M whose rational homology is isomorphic to the rational stable homology of the mapping class group. It is defined as a mapping class group associated to a surface \su of infinite genus, and contains all the pure mapping class groups of compact surfaces of genus gg with nn boundary components, for any g≥0g\geq 0 and n>0n>0. We construct a representation of \M into the restricted symplectic group Spres(Hr){\rm Sp_{res}}({\cal H}_r) of the real Hilbert space generated by the homology classes of non-separating circles on \su, which generalizes the classical symplectic representation of the mapping class groups. Moreover, we show that the first universal Chern class in H^2(\M,\Z) is the pull-back of the Pressley-Segal class on the restricted linear group GLres(H){\rm GL_{res}}({\cal H}) via the inclusion Spres(Hr)⊂GLres(H){\rm Sp_{res}}({\cal H}_r)\subset {\rm GL_{res}}({\cal H}).Comment: 14p., 8 figures, to appear in Commun.Math.Phy

    Development of rate-compatible structured LDPC CODEC algorithms and hardware IP

    Get PDF
    Issued as final reportSamsung Advanced Institute of Technolog

    Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes

    Get PDF
    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow the transversal implementation of a universal set of gates by gauge fixing, while error-detecting measurements involve only 4 or 6 qubits.Comment: 10 pages, 6 figures, as accepted in journa

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=∞N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure

    On Universal Properties of Capacity-Approaching LDPC Ensembles

    Full text link
    This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.Comment: Published in the IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 2956 - 2990, July 200
    • …
    corecore