21 research outputs found

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Non Contact Heart Monitoring

    Get PDF
    Electrocardiograms are one of the most widely used methods for evaluating the structure-function relationships of the heart in health and disease. This book is the first of two volumes which reviews recent advancements in electrocardiography. This volume lays the groundwork for understanding the technical aspects of these advancements. The five sections of this volume, Cardiac Anatomy, ECG Technique, ECG Features, Heart Rate Variability and ECG Data Management, provide comprehensive reviews of advancements in the technical and analytical methods for interpreting and evaluating electrocardiograms. This volume is complemented with anatomical diagrams, electrocardiogram recordings, flow diagrams and algorithms which demonstrate the most modern principles of electrocardiography. The chapters which form this volume describe how the technical impediments inherent to instrument-patient interfacing, recording and interpreting variations in electrocardiogram time intervals and morphologies, as well as electrocardiogram data sharing have been effectively overcome. The advent of novel detection, filtering and testing devices are described. Foremost, among these devices are innovative algorithms for automating the evaluation of electrocardiograms. Permanenet links: Full chapter: http://www.intechopen.com/articles/show/title/non-contact-heart-monitoring Book: http://www.intechopen.com/books/show/title/advances-in-electrocardiograms-methods-and-analysi

    High-Performance Accelerometer Based On Asymmetric Gapped Cantilevers For Physiological Acoustic Sensing

    Get PDF
    Continuous or mobile monitoring of physiological sounds is expected to play important role in the emerging mobile healthcare field. Because of the miniature size, low cost, and easy installation, accelerometer is an excellent choice for continuous physiological acoustic signal monitoring. However, in order to capture the detailed information in the physiological signals for clinical diagnostic purpose, there are more demanding requirements on the sensitivity/noise performance of accelerometers. In this thesis, a unique piezoelectric accelerometer based on the asymmetric gapped cantilever which exhibits significantly improved sensitivity is extensively studied. A meso-scale prototype is developed for capturing the high quality cardio and respiratory sounds on healthy people as well as on heart failure patients. A cascaded gapped cantilever based accelerometer is also explored for low frequency vibration sensing applications such as ballistocardiogram monitoring. Finally, to address the power issues of wireless sensors such as wireless wearable health monitors, a wide band vibration energy harvester based on a folded gapped cantilever is developed and demonstrated on a ceiling air condition unit

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    New methods for continuous non-invasive blood pressure measurement

    Get PDF
    Hlavním cílem této práce je nalezení nové metodiky pro měření kontinuálního neinvazivního krevního tlaku na základě rychlosti šíření pulzní vlny v krevním řečišti. Práce se opírá o rešerši zabývající se základním modelem pro stanovení kontinuálního neinvazivního krevního tlaku na základě měření zpoždění pulzní vlny a jeho rozšířením. Z informací získaných z rešerše se upravila metodika měření doby zpoždění pulzní vlny / rychlosti šíření pulzní vlny, aby bylo možné docílit přesnějších výsledků a omezit tak lidský faktor, který způsobuje významnou nepřesnost vlivem nedokonalého rozmístění senzorů. Rešerše se rovněž podrobně zabývá modely pro stanovení kontinuálního neinvazivního krevního tlaku a jejich úprav zajištujících zvýšení přesnosti. Mezi úpravy modelů zejména patří vstupní parametry popisující krevní oběh - systémový cévní odpor, elasticita cév, tuhost cév. Práce se taky zabývá úpravami stávajícího modelu krevního řečiště pro bližší přizpůsobení fyzického modelu k reálnému cévnímu systému lidského těla. Mezi tyto úpravy patří i funkce baroreflexu či simulace různé tvrdosti stěny umělých cévních segmentů. Protože se jedná o simulační model krevního řečiště, důležitým krokem je také měření tlakové a objemové pulzní vlny, kde není možné využít konvenční senzory pro fotopletysmografii kvůli absenci částic pohlcující světlo. Na základě experimentálního měření pro různé nastavení modelu krevního řečiště bylo provedeno měření pulzní vlny pomocí tlakových a kapacitních senzorů s následným zpracováním měřených signálů a detekcí příznaků charakterizující pulzní vlnu. Na základě příznaku byly stanoveny predikční regresní modely, které vykazovaly dostatečnou přesnost jejich určení, a tak následovaly dvě metody pro získání parametru o tvrdosti cévní stěny na základě měřitelných parametrů. První metodou byl predikční regresní model, který vykazoval přesnost 74,1 % a druhou metodou byl adaptivní neuro-fuzzy inferenční systém, který vykazoval přesnost 98,7 %. Tyto stanovení rychlosti pulzní vlny bylo ověřeno dalším přímým měřením pulzní vlny a výsledky byly srovnány. Výsledkem disertační práce je určení rychlosti šíření pulzní vlny s využitím pouze jednoho pletysmografického senzoru bez nutnosti měření na dvou různých místech s přesným měřením vzdálenosti a možnosti aplikace v klinické praxi.The main objective of this work is to find a new methodology for measuring continuous non-invasive blood pressure based on the pulse wave velocity in the vascular system. The work is based on the literature research of the basic model for the determination of non-invasive continuous blood pressure based on the measurement of pulse transit time. From the information obtained from the review, the methodology of measuring the pulse transit time/pulse wave velocity was modified in order to achieve more accurate results and to reduce the human factor that causes significant inaccuracy due to imperfect sensor placement. The review discusses in detail the models for continuous non-invasive blood pressure estimation and their modifications to ensure increased accuracy. In particular, model modifications include input parameters describing blood circulation - systemic vascular resistance, vascular elasticity, and vascular stiffness. The thesis deals with modifications to the existing physical vascular model to more closely mimic the real vascular system of the human body. These modifications include the baroreflex function or the simulation of different wall hardness of artificial arterial segments. As this is a simulation model of the vascular system, the measurement of pressure and volume pulse wave is also an important step, where it is not possible to use photoplethysmography method due to the absence of light absorbing particles. Based on the experimental measurements for different settings of the vascular model, pulse wave measurements were performed using pressure and capacitive sensors with subsequent processing of the measured signals and detection of the pulse wave features. Predictive regression models were established based on the pulse wave features and showed sufficient accuracy in their determination, followed by two methods for obtaining the parameter on the hardness of the vascular wall based on the measurable parameters. The first method was a predictive regression model, which showed an accuracy of 74.1 %, and the second method was an adaptive neuro-fuzzy inference system, which showed an accuracy of 98.7 %. These pulse wave velocity determinations were verified by further direct pulse wave measurements and the results were compared. The dissertation results in the determination of pulse wave propagation velocity using only one plethysmographic sensor without the need for measurements at two different locations with accurate distance measurements and the possibility of application in clinical practice.450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Continuous Cardiorespiratory Monitoring Using Ballistocardiography From Load Cells Embedded in a Hospital Bed

    Get PDF
    The objective of this research is to explore signal processing and machine learning techniques to allow continuous monitoring of cardiorespiratory parameters using the ballistocardiogram (BCG) signals recorded with sensors embedded in a hospital bed. First, the heart rate (HR) estimation algorithms were presented. The first is signal processing-based HR estimation with array processing for multi-channel combination. The second uses a deep learning (DL) model that transforms BCG signals into an interpretable triangular waveform, from which heartbeat locations can be estimated. Second part of the work focuses on estimating respiratory rate (RR) and respiratory volume (RV) using the respiration waveforms derived from the low-frequency components of the load cell signals. Lastly, this work presents two models for blood pressure (BP) estimation -- 1) Conventional pulse transit time (PTT)-based model and 2) DL-based model, both using multi-channel BCG and the photoplethysmogram (PPG) signals to extract features. Overall, this work established methods to enable non-invasive and continuous monitoring of standard vital signs utilizing the sensors already embedded in commonly-deployed commercially available hospital beds. Such technologies could potentially improve the continuous assessment of the patients' physiologic state without adding an extra burden on the caregivers.Ph.D
    corecore