4 research outputs found

    Signal detection for molecular MIMO communications with asymmetrical topology

    Get PDF
    Molecular communication (MC) has attracted people’s attention due to its potential applications at the micro- to nano-scale. In MC, the transmission rate is usually very low due to the slow diffusion of information molecules and therefore multiple-input multiple-output (MIMO) system is introduced. However, severe interference occurs when the same types of information molecules are used at different transmission antennas. Up to now, most literature focuses on MIMO systems with symmetrical topology. In this paper, a molecular MIMO communication system with asymmetrical topology, where the number of transmission antennas is not equal to that of the reception antennas, is investigated. The zero-forcing (ZF) detection approach is proposed and discussed for three cases, i.e., the number of transmission antennas is smaller than, equal to and larger than the number of the reception antennas. Considering the inter-link interference (ILI) and the inter-symbol interference (ISI), the error probability of ZF detection is derived and comparisons are made with existing molecular MIMO detection method. Besides, the adaptive observation time for each reception antenna is derived for better performance. Numerical results show that ZF detection performs better than the existing molecular MIMO detection method when the ILI is larg

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    Pulse Position-Based Spatial Modulation for Molecular Communications

    No full text
    corecore