467,933 research outputs found

    Rituximab induced pulmonary edema managed with extracorporeal life support

    Get PDF
    Though rare, rituximab has been reported to induce severe pulmonary edema. We describe the first report of ECLS utilization for this indication. A 31-year-old female with severe thrombotic thrombocytopenic purpura developed florid pulmonary edema after rituximab infusion. Despite advanced ventilatory settings, she developed severe respiratory acidosis and remained hypoxemic with a significant vasopressor requirement. Since her pulmonary insult was likely transient, ECLS was considered. Due to combined cardiorespiratory failure, she received support with peripheral venoarterial ECLS. During her ECLS course, she received daily plasmapheresis and high dose steroids. Her pulmonary function recovered and she was decannulated after 8 days. She was discharged after 23 days without residual sequelae

    What role does the right side of the heart play in circulation?

    Get PDF
    Right ventricular failure (RVF) is an underestimated problem in intensive care. This review explores the physiology and pathophysiology of right ventricular function and the pulmonary circulation. When RVF is secondary to an acute increase in afterload, the picture is one of acute cor pulmonale, as occurs in the context of acute respiratory distress syndrome, pulmonary embolism and sepsis. RVF can also be caused by right myocardial dysfunction. Pulmonary arterial catheterization and echocardiography are discussed in terms of their roles in diagnosis and treatment. Treatments include options to reduce right ventricular afterload, specific pulmonary vasodilators and inotropes

    Improved ventricular function during inhalation of PGI(2) aerosol partly relies on enhanced myocardial contractility

    Get PDF
    Inhaled prostacyclin (PGI(2)) aerosol induces selective pulmonary vasodilation. Further, it improves right ventricular ( RV) function, which may largely rely on pulmonary vasodilation, but also on enhanced myocardial contractility. We investigated the effects of the inhaled PGI(2) analogs epoprostenol (EPO) and iloprost (ILO) on RV function and myocardial contractility in 9 anesthetized pigs receiving aerosolized EPO (25 and 50 ng center dot kg(-1) center dot min(-1)) and, consecutively, ILO (60 ng center dot kg(-1) center dot min(-1)) for 20 min each. We measured pulmonary artery pressure ( PAP), RV ejection fraction (RVEF) and RV end-diastolic-volume (RV-EDV), and left ventricular end-systolic pressure-volume-relation (end-systolic elastance, E-es). EPO and ILO reduced PAP, increased RVEF and reduced RVEDV. E-es was enhanced during all doses tested, which reached statistical significance during EPO25ng and ILO, but not during EPO50ng. PGI(2) aerosol enhances myocardial contractility in healthy pigs, contributing to improve RV function. Copyright (C) 2005 S. Karger AG, Basel

    Particulate Matter Exposure Impairs Systemic Microvascular Endothelium-Dependent Dilation

    Get PDF
    Acute exposure to airborne pollutants, such as solid particulate matter (PM), increases the risk of cardiovascular dysfunction, but the mechanisms by which PM evokes systemic effects remain to be identified. The purpose of this study was to determine if pulmonary exposure to a PM surrogate, such as residual oil fly ash (ROFA), affects endothelium-dependent dilation in the systemic microcirculation. Rats were intratracheally instilled with ROFA at 0.1, 0.25, 1 or 2 mg/rat 24 hr before experimental measurements. Rats intratracheally instilled with saline or titanium dioxide (0.25 mg/rat) served as vehicle or particle control groups, respectively. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar dilator responses to the Ca(2+) ionophore A23187, administered by ejection via pressurized micropipette into the arteriolar lumen. We used analysis of bronchoalveolar lavage (BAL) samples to monitor identified pulmonary inflammation and damage. To determine if ROFA exposure affected arteriolar nitric oxide sensitivity, sodium nitroprusside was iontophoretically applied to arterioles of rats exposed to ROFA. In saline-treated rats, A23187 dilated arterioles up to 72 ± 7% of maximum. In ROFA- and TiO(2)-exposed rats, A23187-induced dilation was significantly attenuated. BAL fluid analysis revealed measurable pulmonary inflammation and damage after exposure to 1 and 2 mg ROFA (but not TiO(2) or < 1 mg ROFA), as evidenced by significantly higher polymorphonuclear leukocyte cell counts, enhanced BAL albumin levels, and increased lactate dehydrogenase activity in BAL fluid. The sensitivity of arteriolar smooth muscle to NO was similar in saline-treated and ROFA-exposed rats, suggesting that pulmonary exposure to ROFA affected endothelial rather than smooth muscle function. A significant increase in venular leukocyte adhesion and rolling was observed in ROFA-exposed rats, suggesting local inflammation at the systemic microvascular level. These results indicate that pulmonary PM exposure impairs systemic endothelium-dependent arteriolar dilation. Moreover, because rats exposed to < 1 mg ROFA or TiO(2) did not exhibit BAL signs of pulmonary damage or inflammation, it appears that PM exposure can impair systemic microvascular function independently of detectable pulmonary inflammation

    Persistent Vascular Collagen Accumulation Alters Hemodynamic Recovery from Chronic Hypoxia

    Get PDF
    Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z0), characteristic impedance (ZC), pulse wave velocity (PWV) and index of global wave reflections (Pb/Pf), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1R/R) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1+/+) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z0 (mPAP/CO) increased by ∼100% in both genotypes (pZC, PWV and Pb/Pf did not change. However, with recovery, ZC and PWV decreased in the Col1a1+/+ mice and remained unchanged in the Col1a1R/R mice. Z0 decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function

    A prospective observational study of mycophenolate mofetil treatment in progressive diffuse cutaneous systemic sclerosis of recent onset.

    Get PDF
    OBJECTIVE: A prospective observational study of mycophenolate mofetil (MMF) treatment in patients with diffuse progressive cutaneous systemic sclerosis (SSc) of recent onset. METHODS: Twenty-five previously untreated consecutive patients with recent-onset (\u3c 24 mo) diffuse progressive cutaneous SSc received MMF as the only disease-modifying therapy. Modified Rodnan skin score (mRSS) and affected body surface area (BSA) were compared from initiation of MMF to study end. Pulmonary function tests performed at the same institution before therapy and at study end were available in 15 patients. Histopathology and real-time PCR assessment of fibrosis-related gene expression were performed before and after treatment in skin biopsies from 3 patients. RESULTS: At 18.2 ± 8.73 months of MMF therapy (median 2000 mg/day) the mRSS decreased from 24.56 ± 8.62 to 14.52 ± 10.9 (p = 0.0004) and the affected BSA from 36% ± 16% to 14% ± 13.3% (p = 0.00001). Pulmonary function tests remained stable from initiation of MMF to the end of the study. Skin histopathology showed a remarkable reduction in accumulation of fibrotic tissue. Real-time PCR of skin biopsies demonstrated a marked decrease in expression of fibrosis-related genes. CONCLUSION: Patients with diffuse progressive cutaneous SSc of recent onset treated with MMF experienced marked improvement in skin involvement and stabilization of pulmonary function. Skin biopsies from 3 patients demonstrated histopathological improvement and decreased expression of fibrosis-related genes

    Pulmonary function evaluation during and following Skylab space flights

    Get PDF
    Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters

    Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    Get PDF
    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This \u27self-consistency\u27 property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns

    Quantitative CT analysis in patients with pulmonary emphysema: is lung function influenced by concomitant unspecific pulmonary fibrosis?

    Get PDF
    Purpose: Quantitative analysis of CT scans has proven to be a reproducible technique, which might help to understand the pathophysiology of chronic obstructive pulmonary disease (COPD) and combined pulmonary fibrosis and emphysema. The aim of this retrospective study was to find out if the lung function of patients with COPD with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages III or IV and pulmonary emphysema is measurably influenced by high attenuation areas as a correlate of concomitant unspecific fibrotic changes of lung parenchyma. Patients and methods: Eighty-eight patients with COPD GOLD stage III or IV underwent CT and pulmonary function tests. Quantitative CT analysis was performed to determine low attenuation volume (LAV) and high attenuation volume (HAV), which are considered to be equivalents of fibrotic (HAV) and emphysematous (LAV) changes of lung parenchyma. Both parameters were determined for the whole lung, as well as peripheral and central lung areas only. Multivariate regression analysis was used to correlate HAV with different parameters of lung function. Results: Unlike LAV, HAV did not show significant correlation with parameters of lung function. Even in patients with a relatively high HAVof more than 10%, in contrast to HAV (p=0.786) only LAV showed a significantly negative correlation with forced expiratory volume in 1 second (r=−0.309, R2=0.096, p=0.003). A severe decrease of DLCO% was associated with both larger HAV (p=0.045) and larger LAV (p=0.001). Residual volume and FVC were not influenced by LAV or HAV. Conclusion: In patients with COPD GOLD stage III-IV, emphysematous changes of lung parenchyma seem to have such a strong influence on lung function, which is a possible effect of concomitant unspecific fibrosis is overwhelmed
    corecore