756 research outputs found

    Efficient Belief Propagation for Perception and Manipulation in Clutter

    Full text link
    Autonomous service robots are required to perform tasks in common human indoor environments. To achieve goals associated with these tasks, the robot should continually perceive, reason its environment, and plan to manipulate objects, which we term as goal-directed manipulation. Perception remains the most challenging aspect of all stages, as common indoor environments typically pose problems in recognizing objects under inherent occlusions with physical interactions among themselves. Despite recent progress in the field of robot perception, accommodating perceptual uncertainty due to partial observations remains challenging and needs to be addressed to achieve the desired autonomy. In this dissertation, we address the problem of perception under uncertainty for robot manipulation in cluttered environments using generative inference methods. Specifically, we aim to enable robots to perceive partially observable environments by maintaining an approximate probability distribution as a belief over possible scene hypotheses. This belief representation captures uncertainty resulting from inter-object occlusions and physical interactions, which are inherently present in clutterred indoor environments. The research efforts presented in this thesis are towards developing appropriate state representations and inference techniques to generate and maintain such belief over contextually plausible scene states. We focus on providing the following features to generative inference while addressing the challenges due to occlusions: 1) generating and maintaining plausible scene hypotheses, 2) reducing the inference search space that typically grows exponentially with respect to the number of objects in a scene, 3) preserving scene hypotheses over continual observations. To generate and maintain plausible scene hypotheses, we propose physics informed scene estimation methods that combine a Newtonian physics engine within a particle based generative inference framework. The proposed variants of our method with and without a Monte Carlo step showed promising results on generating and maintaining plausible hypotheses under complete occlusions. We show that estimating such scenarios would not be possible by the commonly adopted 3D registration methods without the notion of a physical context that our method provides. To scale up the context informed inference to accommodate a larger number of objects, we describe a factorization of scene state into object and object-parts to perform collaborative particle-based inference. This resulted in the Pull Message Passing for Nonparametric Belief Propagation (PMPNBP) algorithm that caters to the demands of the high-dimensional multimodal nature of cluttered scenes while being computationally tractable. We demonstrate that PMPNBP is orders of magnitude faster than the state-of-the-art Nonparametric Belief Propagation method. Additionally, we show that PMPNBP successfully estimates poses of articulated objects under various simulated occlusion scenarios. To extend our PMPNBP algorithm for tracking object states over continuous observations, we explore ways to propose and preserve hypotheses effectively over time. This resulted in an augmentation-selection method, where hypotheses are drawn from various proposals followed by the selection of a subset using PMPNBP that explained the current state of the objects. We discuss and analyze our augmentation-selection method with its counterparts in belief propagation literature. Furthermore, we develop an inference pipeline for pose estimation and tracking of articulated objects in clutter. In this pipeline, the message passing module with the augmentation-selection method is informed by segmentation heatmaps from a trained neural network. In our experiments, we show that our proposed pipeline can effectively maintain belief and track articulated objects over a sequence of observations under occlusion.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163159/1/kdesingh_1.pd

    Background Subtraction with Dirichlet Process Mixture Models

    Get PDF
    ESPRC Grant: EP/G063974/

    On the Intersection of Communication and Machine Learning

    Get PDF
    The intersection of communication and machine learning is attracting increasing interest from both communities. On the one hand, the development of modern communication system brings large amount of data and high performance requirement, which challenges the classic analytical-derivation based study philosophy and encourages the researchers to explore the data driven method, such as machine learning, to solve the problems with high complexity and large scale. On the other hand, the usage of distributed machine learning introduces the communication cost as one of the basic considerations for the design of machine learning algorithm and system.In this thesis, we first explore the application of machine learning on one of the classic problems in wireless network, resource allocation, for heterogeneous millimeter wave networks when the environment is with high dynamics. We address the practical concerns by providing the efficient online and distributed framework. In the second part, some sampling based communication-efficient distributed learning algorithm is proposed. We utilize the trade-off between the local computation and the total communication cost and propose the algorithm with good theoretical bound. In more detail, this thesis makes the following contributionsWe introduced an reinforcement learning framework to solve the resource allocation problems in heterogeneous millimeter wave network. The large state/action space is decomposed according to the topology of the network and solved by an efficient distribtued message passing algorithm. We further speed up the inference process by an online updating process.We proposed the distributed coreset based boosting framework. An efficient coreset construction algorithm is proposed based on the prior knowledge provided by clustering. Then the coreset is integrated with boosting with improved convergence rate. We extend the proposed boosting framework to the distributed setting, where the communication cost is reduced by the good approximation of coreset.We propose an selective sampling framework to construct a subset of sample that could effectively represent the model space. Based on the prior distribution of the model space or the large amount of samples from model space, we derive a computational efficient method to construct such subset by minimizing the error of classifying a classifier

    Bayesian Modelling in Machine Learning: A Tutorial Review

    Get PDF
    Many facets of Bayesian Modelling are firmly established in Machine Learning and give rise to state-of-the-art solutions to application problems. The sheer number of techniques, ideas and models which have been proposed, and the terminology, can be bewildering. With this tutorial review, we aim to give a wide high-level overview over this important field, concentrating on central ideas and methods, and on their interconnections. The reader will gain a basic understanding of the topics and their relationships, armed with which she can branch to details of her interest using the references to more specialized textbooks and reviews we provide here

    Adaptive Pose Priors for Pictorial Structures

    Get PDF
    Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and parameterization of the model is often restricted, for example, by assuming tree dependency structure and unimodal, data-independent pairwise interactions. These expressivity restrictions fail to capture important patterns in the data. On the other hand, local methods such as nearest-neighbor classification and kernel density estimation provide nonparametric flexibility but require large amounts of data to generalize well. We propose a simple semi-parametric approach that combines the tractability of pictorial structure inference with the flexibility of non-parametric methods by expressing a subset of model parameters as kernel regression estimates from a learned sparse set of exemplars. This yields query-specific, image-dependent pose priors. We develop an effective shape-based kernel for upper-body pose similarity and propose a leave-one-out loss function for learning a sparse subset of exemplars for kernel regression. We apply our techniques to two challenging datasets of human figure parsing and advance the state-of-the-art (from 80% to 86% on the Buffy dataset [8]), while using only 15% of the training data as exemplars
    • …
    corecore