4,173 research outputs found

    Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters

    Full text link
    Data privacy is crucial when dealing with biometric data. Accounting for the latest European data privacy regulation and payment service directive, biometric template protection is essential for any commercial application. Ensuring unlinkability across biometric service operators, irreversibility of leaked encrypted templates, and renewability of e.g., voice models following the i-vector paradigm, biometric voice-based systems are prepared for the latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean and cosine comparators are known to ensure data privacy demands, without loss of discrimination nor calibration performance. Bridging gaps from template protection to speaker recognition, two architectures are proposed for the two-covariance comparator, serving as a generative model in this study. The first architecture preserves privacy of biometric data capture subjects. In the second architecture, model parameters of the comparator are encrypted as well, such that biometric service providers can supply the same comparison modules employing different key pairs to multiple biometric service operators. An experimental proof-of-concept and complexity analysis is carried out on the data from the 2013-2014 NIST i-vector machine learning challenge

    A new cramer-shoup like methodology for group based provably secure encryption schemes

    Get PDF
    Proceedings of: TCC 2005: Theory of Cryptography Conference, 10-12 February 2005, Cambridge, MA, USA.A theoretical framework for the design of - in the sense of IND-CCA - provably secure public key cryptosystems taking non-abelian groups as a base is given. Our construction is inspired by Cramer and Shoup's general framework for developing secure encryption schemes from certain language membership problems; thus all our proofs are in the standard model, without any idealization assumptions. The skeleton we present is conceived as a guiding tool towards the construction of secure concrete schemes from finite non-abelian groups (although it is possible to use it also in conjunction with finite abelian groups)

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    EVALUATION OF CRYPTOGRAPHIC ALGORITHMS

    Get PDF
    This article represents a synthesis of the evaluation methods for cryptographic algorithms and of their efficiency within practical applications. It approaches also the main operations carried out in cryptanalysis and the main categories and methods of attack in order to clarify the differences between evaluation concept and crypto algorithm cracking.cryptology, cryptanalysis, evaluation and cracking cryptographic algorithms

    Analysis of the Security of BB84 by Model Checking

    Full text link
    Quantum Cryptography or Quantum key distribution (QKD) is a technique that allows the secure distribution of a bit string, used as key in cryptographic protocols. When it was noted that quantum computers could break public key cryptosystems based on number theory extensive studies have been undertaken on QKD. Based on quantum mechanics, QKD offers unconditionally secure communication. Now, the progress of research in this field allows the anticipation of QKD to be available outside of laboratories within the next few years. Efforts are made to improve the performance and reliability of the implemented technologies. But several challenges remain despite this big progress. The task of how to test the apparatuses of QKD For example did not yet receive enough attention. These devises become complex and demand a big verification effort. In this paper we are interested in an approach based on the technique of probabilistic model checking for studying quantum information. Precisely, we use the PRISM tool to analyze the security of BB84 protocol and we are focused on the specific security property of eavesdropping detection. We show that this property is affected by the parameters of quantum channel and the power of eavesdropper.Comment: 12 Pages, IJNS
    • …
    corecore