3 research outputs found

    Secure authentication for remote patient monitoring withwireless medical sensor networks

    Get PDF
    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. © 2016 by the authors; licensee MDPI, Basel, Switzerland

    Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    Full text link
    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes

    Public-Key Authentication for Cloud-based WBANs

    No full text
    Merging WBAN systems with cloud computing is an efficient solution to overcome limitations inherent in WBAN, especially in critical human-related applications such as remote health monitoring. In cloud-based WBAN, the nodes are classified into WBAN sensors that report measurements about the human body and WBAN actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue as any alteration may lead to serious consequences. This paper presents a light-weight public-key authentication protocol for cloud-based WBAN systems. The proposed protocol is based on the modified Rabin authentication algorithm which is customized in this paper by making some of its components run in parallel. To prove the efficiency of the modified Rabin we implemented the algorithm with different hardware settings using Tmote Sky motes. The Rabin algorithm with and without the parallel settings is also programmed on FPGA to evaluate its design and performance. The results show that secure, direct, instant, and authenticated commands can be delivered from the medical staff located at the cloud side to the WBAN nodes located in/on the human body. Compared to other public-key protocols implemented on the motes, Rabin algorithm achieved extremely faster verification and reasonable signature generation speed. Moreover, the suggested parallel settings of the Rabin signature generation significantly reduced the delays (by almost 80%) which is a critical issue in WBAN applications
    corecore