67 research outputs found

    Security problems with a chaos-based deniable authentication scheme

    Full text link
    Recently, a new scheme was proposed for deniable authentication. Its main originality lied on applying a chaos-based encryption-hash parallel algorithm and the semi-group property of the Chebyshev chaotic map. Although original and practicable, its insecurity and inefficiency are shown in this paper, thus rendering it inadequate for adoption in e-commerce.Comment: 8 pages, 1 figure, latex forma

    An improved public key cryptographic algorithm based on chebyshev polynomials and RSA

    Get PDF
    Due to its very desirable properties, Chebyshev polynomials are often used in the design of public key cryptographic systems. This paper discretizes the Chebyshev mapping, generalizes the properties of Chebyshev polynomials, and proposes an improved public key encryption algorithm based on Chebyshev chaotic mapping and RSA, i.e., CRPKC −Ki. This algorithm introduces alternative multiplication coefficients Ki, the selection of which is determined by the size of Tr(Td(x))mod N = Td(Tr(x))mod N, and the specific value selection rules are shared secrets among participants, overcoming the shortcomings of previous schemes. In the key generation and encryption/decryption stages, more complex intermediate processes are used to achieve higher algorithm complexity, making the algorithm more robust against ordinary attacks. The algorithm is also compared with other RSA-based algorithms to demonstrate its effectiveness in terms of performance and security

    Evaluation Methods for Chebyshev Polynomials

    Get PDF
    The security of cryptosystems based on Chebyshev recursive relation, T_n(x)=2xT_{n-1}(x)-T_{n-2}(x), relies on the difficulty of finding the large degree of Chebyshev polynomials from given parameters. The relation cannot be used to evaluate T_n(x) if n is very large. We will investigate other three methods: matrix-multiplication-based evaluation, halve-and-square evaluation, and root-extraction-based evaluation. Though they have the same theoretical complexity O(\log n\log^2p), we find in some cases the root-extraction-based method is more efficient than the others, which is as fast as the general modular exponentiation. The result indicates that the hardness of some cryptosystems based on modular Chebyshev polynomials is almost equivalent to that of solving general discrete logarithm

    Design of identity-based digital signature schemes using extended chaotic maps

    Get PDF
    Inspired from the Identity-based cryptosystem proposed by Adi Shamir, and Boneh and Franklin, this paper designed a new Identity-based digital signature (ECM-IDS) scheme using extended chaotic maps. The ECM-IDS scheme is secure based on the difficulties of integer factorization problem

    A new RSA public key encryption scheme with chaotic maps

    Get PDF
    Public key cryptography has received great attention in the field of information exchange through insecure channels. In this paper, we combine the Dependent-RSA (DRSA) and chaotic maps (CM) to get a new secure cryptosystem, which depends on both integer factorization and chaotic maps discrete logarithm (CMDL). Using this new system, the scammer has to go through two levels of reverse engineering, concurrently, so as to perform the recovery of original text from the cipher-text has been received. Thus, this new system is supposed to be more sophisticated and more secure than other systems. We prove that our new cryptosystem does not increase the overhead in performing the encryption process or the decryption process considering that it requires minimum operations in both. We show that this new cryptosystem is more efficient in terms of performance compared with other encryption systems, which makes it more suitable for nodes with limited computational ability

    Binary Sequences Using Chaotic Dynamics and Their Applications to Communications

    Get PDF
    AbstractShannon's communication system has three essential parts: (1) source, (2) receiver, and (3) channel. Since the usual or real communication systems are of a statistical nature, the performance of the system can never be described in a deterministic sense rather, it is always given in statistical terms. There are several close relationships between information sources and chaos because “chaos” is both of a deterministic and of a probabilistic nature. We review statistical properties of sequences of i.i.d. binary random variables (BRVs) generated by chaotic dynamics: (1) generation method of sequences of i.i.d. BRVs; and (2) designs of Spreading Spectrum (SS) codes generated by a Markov chain
    • 

    corecore