48 research outputs found

    Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights

    Full text link
    We present a tree-based construction of LDPC codes that have minimum pseudocodeword weight equal to or almost equal to the minimum distance, and perform well with iterative decoding. The construction involves enumerating a dd-regular tree for a fixed number of layers and employing a connection algorithm based on permutations or mutually orthogonal Latin squares to close the tree. Methods are presented for degrees d=psd=p^s and d=ps+1d = p^s+1, for pp a prime. One class corresponds to the well-known finite-geometry and finite generalized quadrangle LDPC codes; the other codes presented are new. We also present some bounds on pseudocodeword weight for pp-ary LDPC codes. Treating these codes as pp-ary LDPC codes rather than binary LDPC codes improves their rates, minimum distances, and pseudocodeword weights, thereby giving a new importance to the finite geometry LDPC codes where p>2p > 2.Comment: Submitted to Transactions on Information Theory. Submitted: Oct. 1, 2005; Revised: May 1, 2006, Nov. 25, 200

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication
    corecore