5,229 research outputs found
SEVEN: Deep Semi-supervised Verification Networks
Verification determines whether two samples belong to the same class or not,
and has important applications such as face and fingerprint verification, where
thousands or millions of categories are present but each category has scarce
labeled examples, presenting two major challenges for existing deep learning
models. We propose a deep semi-supervised model named SEmi-supervised
VErification Network (SEVEN) to address these challenges. The model consists of
two complementary components. The generative component addresses the lack of
supervision within each category by learning general salient structures from a
large amount of data across categories. The discriminative component exploits
the learned general features to mitigate the lack of supervision within
categories, and also directs the generative component to find more informative
structures of the whole data manifold. The two components are tied together in
SEVEN to allow an end-to-end training of the two components. Extensive
experiments on four verification tasks demonstrate that SEVEN significantly
outperforms other state-of-the-art deep semi-supervised techniques when labeled
data are in short supply. Furthermore, SEVEN is competitive with fully
supervised baselines trained with a larger amount of labeled data. It indicates
the importance of the generative component in SEVEN.Comment: 7 pages, 2 figures, accepted to the 2017 International Joint
Conference on Artificial Intelligence (IJCAI-17
- …
