4,987 research outputs found

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Improved Heterogeneous Distance Functions

    Full text link
    Instance-based learning techniques typically handle continuous and linear input values well, but often do not handle nominal input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between nominal attribute values, but it largely ignores continuous attributes, requiring discretization to map continuous values into nominal values. This paper proposes three new heterogeneous distance functions, called the Heterogeneous Value Difference Metric (HVDM), the Interpolated Value Difference Metric (IVDM), and the Windowed Value Difference Metric (WVDM). These new distance functions are designed to handle applications with nominal attributes, continuous attributes, or both. In experiments on 48 applications the new distance metrics achieve higher classification accuracy on average than three previous distance functions on those datasets that have both nominal and continuous attributes.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    OCReP: An Optimally Conditioned Regularization for Pseudoinversion Based Neural Training

    Full text link
    In this paper we consider the training of single hidden layer neural networks by pseudoinversion, which, in spite of its popularity, is sometimes affected by numerical instability issues. Regularization is known to be effective in such cases, so that we introduce, in the framework of Tikhonov regularization, a matricial reformulation of the problem which allows us to use the condition number as a diagnostic tool for identification of instability. By imposing well-conditioning requirements on the relevant matrices, our theoretical analysis allows the identification of an optimal value for the regularization parameter from the standpoint of stability. We compare with the value derived by cross-validation for overfitting control and optimisation of the generalization performance. We test our method for both regression and classification tasks. The proposed method is quite effective in terms of predictivity, often with some improvement on performance with respect to the reference cases considered. This approach, due to analytical determination of the regularization parameter, dramatically reduces the computational load required by many other techniques.Comment: Published on Neural Network

    Online Deep Metric Learning

    Full text link
    Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.Comment: 9 page
    • …
    corecore