302 research outputs found

    Power scalable implementation of artificial neural networks

    No full text
    As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques

    Pruning Error Minimization in Least Squares Support Vector Machines

    Get PDF
    The support vector machine (SVM) is a method for classification and for function approximation. This method commonly makes use of an /spl epsi/-insensitive cost function, meaning that errors smaller than /spl epsi/ remain unpunished. As an alternative, a least squares support vector machine (LSSVM) uses a quadratic cost function. When the LSSVM method is used for function approximation, a nonsparse solution is obtained. The sparseness is imposed by pruning, i.e., recursively solving the approximation problem and subsequently omitting data that has a small error in the previous pass. However, omitting data with a small approximation error in the previous pass does not reliably predict what the error will be after the sample has been omitted. In this paper, a procedure is introduced that selects from a data set the training sample that will introduce the smallest approximation error when it will be omitted. It is shown that this pruning scheme outperforms the standard one
    • …
    corecore