4,564 research outputs found

    Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy

    Full text link
    Currently, Deep Convolutional Neural Networks (DCNNs) are used to solve all kinds of problems in the field of machine learning and artificial intelligence due to their learning and adaptation capabilities. However, most successful DCNN models have a high computational complexity making them difficult to deploy on mobile or embedded platforms. This problem has prompted many researchers to develop algorithms and approaches to help reduce the computational complexity of such models. One of them is called filter pruning, where convolution filters are eliminated to reduce the number of parameters and, consequently, the computational complexity of the given model. In the present work, we propose a novel algorithm to perform filter pruning by using Multi-Objective Evolution Strategy (ES) algorithm, called DeepPruningES. Our approach avoids the need for using any knowledge during the pruning procedure and helps decision-makers by returning three pruned CNN models with different trade-offs between performance and computational complexity. We show that DeepPruningES can significantly reduce a model's computational complexity by testing it on three DCNN architectures: Convolutional Neural Networks (CNNs), Residual Neural Networks (ResNets), and Densely Connected Neural Networks (DenseNets).Comment: Accepted at Information Science

    Joint Multi-Dimension Pruning

    Full text link
    We present joint multi-dimension pruning (named as JointPruning), a new perspective of pruning a network on three crucial aspects: spatial, depth and channel simultaneously. The joint strategy enables to search a better status than previous studies that focused on individual dimension solely, as our method is optimized collaboratively across the three dimensions in a single end-to-end training. Moreover, each dimension that we consider can promote to get better performance through colluding with the other two. Our method is realized by the adapted stochastic gradient estimation. Extensive experiments on large-scale ImageNet dataset across a variety of network architectures MobileNet V1&V2 and ResNet demonstrate the effectiveness of our proposed method. For instance, we achieve significant margins of 2.5% and 2.6% improvement over the state-of-the-art approach on the already compact MobileNet V1&V2 under an extremely large compression ratio

    Meta-Learning of Neural Architectures for Few-Shot Learning

    Full text link
    The recent progress in neural architecture search (NAS) has allowed scaling the automated design of neural architectures to real-world domains, such as object detection and semantic segmentation. However, one prerequisite for the application of NAS are large amounts of labeled data and compute resources. This renders its application challenging in few-shot learning scenarios, where many related tasks need to be learned, each with limited amounts of data and compute time. Thus, few-shot learning is typically done with a fixed neural architecture. To improve upon this, we propose MetaNAS, the first method which fully integrates NAS with gradient-based meta-learning. MetaNAS optimizes a meta-architecture along with the meta-weights during meta-training. During meta-testing, architectures can be adapted to a novel task with a few steps of the task optimizer, that is: task adaptation becomes computationally cheap and requires only little data per task. Moreover, MetaNAS is agnostic in that it can be used with arbitrary model-agnostic meta-learning algorithms and arbitrary gradient-based NAS methods. %We present encouraging results for MetaNAS with a combination of DARTS and REPTILE on few-shot classification benchmarks. Empirical results on standard few-shot classification benchmarks show that MetaNAS with a combination of DARTS and REPTILE yields state-of-the-art results

    Rethinking Performance Estimation in Neural Architecture Search

    Full text link
    Neural architecture search (NAS) remains a challenging problem, which is attributed to the indispensable and time-consuming component of performance estimation (PE). In this paper, we provide a novel yet systematic rethinking of PE in a resource constrained regime, termed budgeted PE (BPE), which precisely and effectively estimates the performance of an architecture sampled from an architecture space. Since searching an optimal BPE is extremely time-consuming as it requires to train a large number of networks for evaluation, we propose a Minimum Importance Pruning (MIP) approach. Given a dataset and a BPE search space, MIP estimates the importance of hyper-parameters using random forest and subsequently prunes the minimum one from the next iteration. In this way, MIP effectively prunes less important hyper-parameters to allocate more computational resource on more important ones, thus achieving an effective exploration. By combining BPE with various search algorithms including reinforcement learning, evolution algorithm, random search, and differentiable architecture search, we achieve 1, 000x of NAS speed up with a negligible performance drop comparing to the SOT

    You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization

    Full text link
    Recently Neural Architecture Search (NAS) has aroused great interest in both academia and industry, however it remains challenging because of its huge and non-continuous search space. Instead of applying evolutionary algorithm or reinforcement learning as previous works, this paper proposes a Direct Sparse Optimization NAS (DSO-NAS) method. In DSO-NAS, we provide a novel model pruning view to NAS problem. In specific, we start from a completely connected block, and then introduce scaling factors to scale the information flow between operations. Next, we impose sparse regularizations to prune useless connections in the architecture. Lastly, we derive an efficient and theoretically sound optimization method to solve it. Our method enjoys both advantages of differentiability and efficiency, therefore can be directly applied to large datasets like ImageNet. Particularly, On CIFAR-10 dataset, DSO-NAS achieves an average test error 2.84\%, while on the ImageNet dataset DSO-NAS achieves 25.4\% test error under 600M FLOPs with 8 GPUs in 18 hours.Comment: ICLR2019 Submissio

    Towards Evolutional Compression

    Full text link
    Compressing convolutional neural networks (CNNs) is essential for transferring the success of CNNs to a wide variety of applications to mobile devices. In contrast to directly recognizing subtle weights or filters as redundant in a given CNN, this paper presents an evolutionary method to automatically eliminate redundant convolution filters. We represent each compressed network as a binary individual of specific fitness. Then, the population is upgraded at each evolutionary iteration using genetic operations. As a result, an extremely compact CNN is generated using the fittest individual. In this approach, either large or small convolution filters can be redundant, and filters in the compressed network are more distinct. In addition, since the number of filters in each convolutional layer is reduced, the number of filter channels and the size of feature maps are also decreased, naturally improving both the compression and speed-up ratios. Experiments on benchmark deep CNN models suggest the superiority of the proposed algorithm over the state-of-the-art compression methods

    Artificial neural networks condensation: A strategy to facilitate adaption of machine learning in medical settings by reducing computational burden

    Full text link
    Machine Learning (ML) applications on healthcare can have a great impact on people's lives helping deliver better and timely treatment to those in need. At the same time, medical data is usually big and sparse requiring important computational resources. Although it might not be a problem for wide-adoption of ML tools in developed nations, availability of computational resource can very well be limited in third-world nations. This can prevent the less favored people from benefiting of the advancement in ML applications for healthcare. In this project we explored methods to increase computational efficiency of ML algorithms, in particular Artificial Neural Nets (NN), while not compromising the accuracy of the predicted results. We used in-hospital mortality prediction as our case analysis based on the MIMIC III publicly available dataset. We explored three methods on two different NN architectures. We reduced the size of recurrent neural net (RNN) and dense neural net (DNN) by applying pruning of "unused" neurons. Additionally, we modified the RNN structure by adding a hidden-layer to the LSTM cell allowing to use less recurrent layers for the model. Finally, we implemented quantization on DNN forcing the weights to be 8-bits instead of 32-bits. We found that all our methods increased computational efficiency without compromising accuracy and some of them even achieved higher accuracy than the pre-condensed baseline models

    N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

    Full text link
    While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks

    Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure

    Full text link
    Model-based compression is an effective, facilitating, and expanded model of neural network models with limited computing and low power. However, conventional models of compression techniques utilize crafted features [2,3,12] and explore specialized areas for exploration and design of large spaces in terms of size, speed, and accuracy, which usually have returns Less and time is up. This paper will effectively analyze deep auto compression (ADC) and reinforcement learning strength in an effective sample and space design, and improve the compression quality of the model. The results of compression of the advanced model are obtained without any human effort and in a completely automated way. With a 4- fold reduction in FLOP, the accuracy of 2.8% is higher than the manual compression model for VGG-16 in ImageNet

    NeuNetS: An Automated Synthesis Engine for Neural Network Design

    Full text link
    Application of neural networks to a vast variety of practical applications is transforming the way AI is applied in practice. Pre-trained neural network models available through APIs or capability to custom train pre-built neural network architectures with customer data has made the consumption of AI by developers much simpler and resulted in broad adoption of these complex AI models. While prebuilt network models exist for certain scenarios, to try and meet the constraints that are unique to each application, AI teams need to think about developing custom neural network architectures that can meet the tradeoff between accuracy and memory footprint to achieve the tight constraints of their unique use-cases. However, only a small proportion of data science teams have the skills and experience needed to create a neural network from scratch, and the demand far exceeds the supply. In this paper, we present NeuNetS : An automated Neural Network Synthesis engine for custom neural network design that is available as part of IBM's AI OpenScale's product. NeuNetS is available for both Text and Image domains and can build neural networks for specific tasks in a fraction of the time it takes today with human effort, and with accuracy similar to that of human-designed AI models.Comment: 14 pages, 12 figures. arXiv admin note: text overlap with arXiv:1806.0025
    • …
    corecore