9,019 research outputs found

    A Visibility and Spatial Constraint-Based Approach for Geopositioning

    Get PDF
    Over the past decade, automated systems dedicated to geopositioning have been the object of considerable development. Despite the success of these systems for many applications, they cannot be directly applied to qualitative descriptions of space. The research presented in this paper introduces a visibility and constraintbased approach whose objective is to locate an observer from the verbal description of his/her surroundings. The geopositioning process is formally supported by a constraint-satisfaction algorithm. Preliminary experiments are applied to the description of environmental scenes

    A Visibility and Spatial Constraint-Based Approach for Geopositioning

    Get PDF
    Over the past decade, automated systems dedicated to geopositioning have been the object of considerable development. Despite the success of these systems for many applications, they cannot be directly applied to qualitative descriptions of space. The research presented in this paper introduces a visibility and constraintbased approach whose objective is to locate an observer from the verbal description of his/her surroundings. The geopositioning process is formally supported by a constraint-satisfaction algorithm. Preliminary experiments are applied to the description of environmental scenes

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep6,43,89,127\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep22125\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep6127\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF2139\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF1521\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE9\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table
    corecore