15,328 research outputs found

    The Whole World in Your Hand: Active and Interactive Segmentation

    Get PDF
    Object segmentation is a fundamental problem in computer vision and a powerful resource for development. This paper presents three embodied approaches to the visual segmentation of objects. Each approach to segmentation is aided by the presence of a hand or arm in the proximity of the object to be segmented. The first approach is suitable for a robotic system, where the robot can use its arm to evoke object motion. The second method operates on a wearable system, viewing the world from a human's perspective, with instrumentation to help detect and segment objects that are held in the wearer's hand. The third method operates when observing a human teacher, locating periodic motion (finger/arm/object waving or tapping) and using it as a seed for segmentation. We show that object segmentation can serve as a key resource for development by demonstrating methods that exploit high-quality object segmentations to develop both low-level vision capabilities (specialized feature detectors) and high-level vision capabilities (object recognition and localization)

    Localizing Region-Based Active Contours

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.2004611In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models

    Visual Chunking: A List Prediction Framework for Region-Based Object Detection

    Full text link
    We consider detecting objects in an image by iteratively selecting from a set of arbitrarily shaped candidate regions. Our generic approach, which we term visual chunking, reasons about the locations of multiple object instances in an image while expressively describing object boundaries. We design an optimization criterion for measuring the performance of a list of such detections as a natural extension to a common per-instance metric. We present an efficient algorithm with provable performance for building a high-quality list of detections from any candidate set of region-based proposals. We also develop a simple class-specific algorithm to generate a candidate region instance in near-linear time in the number of low-level superpixels that outperforms other region generating methods. In order to make predictions on novel images at testing time without access to ground truth, we develop learning approaches to emulate these algorithms' behaviors. We demonstrate that our new approach outperforms sophisticated baselines on benchmark datasets.Comment: to appear at ICRA 201
    • …
    corecore