845 research outputs found

    Reproducibility of scientific workflows execution using cloud-aware provenance (ReCAP)

    Get PDF
    © 2018, Springer-Verlag GmbH Austria, part of Springer Nature. Provenance of scientific workflows has been considered a mean to provide workflow reproducibility. However, the provenance approaches adopted so far are not applicable in the context of Cloud because the provenance trace lacks the Cloud information. This paper presents a novel approach that collects the Cloud-aware provenance and represents it as a graph. The workflow execution reproducibility on the Cloud is determined by comparing the workflow provenance at three levels i.e., workflow structure, execution infrastructure and workflow outputs. The experimental evaluation shows that the implemented approach can detect changes in the provenance traces and the outputs produced by the workflow

    Introducing W.A.T.E.R.S.: a Workflow for the Alignment, Taxonomy, and Ecology of Ribosomal Sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly.</p> <p>Results</p> <p>We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform.</p> <p>Conclusions</p> <p>By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-to-combine tools for asking increasingly complex microbial ecology questions.</p

    Scientific workflow execution reproducibility using cloud-aware provenance

    Get PDF
    Scientific experiments and projects such as CMS and neuGRIDforYou (N4U) are annually producing data of the order of Peta-Bytes. They adopt scientific workflows to analyse this large amount of data in order to extract meaningful information. These workflows are executed over distributed resources, both compute and storage in nature, provided by the Grid and recently by the Cloud. The Cloud is becoming the playing field for scientists as it provides scalability and on-demand resource provisioning. Reproducing a workflow execution to verify results is vital for scientists and have proven to be a challenge. As per a study (Belhajjame et al. 2012) around 80% of workflows cannot be reproduced, and 12% of them are due to the lack of information about the execution environment. The dynamic and on-demand provisioning capability of the Cloud makes this more challenging. To overcome these challenges, this research aims to investigate how to capture the execution provenance of a scientific workflow along with the resources used to execute the workflow in a Cloud infrastructure. This information will then enable a scientist to reproduce workflow-based scientific experiments on the Cloud infrastructure by re-provisioning the similar resources on the Cloud.Provenance has been recognised as information that helps in debugging, verifying and reproducing a scientific workflow execution. Recent adoption of Cloud-based scientific workflows presents an opportunity to investigate the suitability of existing approaches or to propose new approaches to collect provenance information from the Cloud and to utilize it for workflow reproducibility on the Cloud. From literature analysis, it was found that the existing approaches for Grid or Cloud do not provide detailed resource information and also do not present an automatic provenance capturing approach for the Cloud environment. To mitigate the challenges and fulfil the knowledge gap, a provenance based approach, ReCAP, has been proposed in this thesis. In ReCAP, workflow execution reproducibility is achieved by (a) capturing the Cloud-aware provenance (CAP), b) re-provisioning similar resources on the Cloud and re-executing the workflow on them and (c) by comparing the provenance graph structure including the Cloud resource information, and outputs of workflows. ReCAP captures the Cloud resource information and links it with the workflow provenance to generate Cloud-aware provenance. The Cloud-aware provenance consists of configuration parameters relating to hardware and software describing a resource on the Cloud. This information once captured aids in re-provisioning the same execution infrastructure on the Cloud for workflow re-execution. Since resources on the Cloud can be used in static or dynamic (i.e. destroyed when a task is finished) manner, this presents a challenge for the devised provenance capturing approach. In order to deal with these scenarios, different capturing and mapping approaches have been presented in this thesis. These mapping approaches work outside the virtual machine and collect resource information from the Cloud middleware, thus they do not affect job performance. The impact of the collected Cloud resource information on the job as well as on the workflow execution has been evaluated through various experiments in this thesis. In ReCAP, the workflow reproducibility isverified by comparing the provenance graph structure, infrastructure details and the output produced by the workflows. To compare the provenance graphs, the captured provenance information including infrastructure details is translated to a graph model. These graphs of original execution and the reproduced execution are then compared in order to analyse their similarity. In this regard, two comparison approaches have been presented that can produce a qualitative analysis as well as quantitative analysis about the graph structure. The ReCAP framework and its constituent components are evaluated using different scientific workflows such as ReconAll and Montage from the domains of neuroscience (i.e. N4U) and astronomy respectively. The results have shown that ReCAP has been able to capture the Cloud-aware provenance and demonstrate the workflow execution reproducibility by re-provisioning the same resources on the Cloud. The results have also demonstrated that the provenance comparison approaches can determine the similarity between the two given provenance graphs. The results of workflow output comparison have shown that this approach is suitable to compare the outputs of scientific workflows, especially for deterministic workflows

    MANUFACTURE OF INDIVIDUALIZED DOSING: DEVELOPMENT AND CONTROL OF A DROPWISE ADDITIVE MANUFACTURING PROCESS FOR MELT BASED PHARMACEUTICAL PRODUCTS

    Get PDF
    The improvements in healthcare systems and the advent of precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery of individualized dosing and personalized treatments. In recent years, the US Food and Drug Administration (FDA) introduced the Quality by Design (QbD) and Process Analytical Technology (PAT) guidelines to encourage innovation and efficiency in pharmaceutical development, manufacturing and quality assurance. As a result of emerging technologies and encouragement from the regulatory authorities, the pharmaceutical industry has begun to develop more efficient production systems with more intensive use of on-line measurement and sensing, real time quality control and process control tools, which offer the potential for reduced variability, increased flexibility and efficiency, and improved product quality

    Virtual Cluster Management for Analysis of Geographically Distributed and Immovable Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Scenarios exist in the era of Big Data where computational analysis needs to utilize widely distributed and remote compute clusters, especially when the data sources are sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could be ecologically sensitive, for instance, and unable to be moved outside the country boundaries. Controlling an analysis experiment in this virtual cluster setting can be difficult on multiple levels: with setup and control, with managing behavior of the virtual cluster, and with interoperability issues across the compute clusters. Further, datasets can be distributed among clusters, or even across data centers, so that it becomes critical to utilize data locality information to optimize the performance of data-intensive jobs. Finally, datasets are increasingly sensitive and tied to certain administrative boundaries, though once the data has been processed, the aggregated or statistical result can be shared across the boundaries. This dissertation addresses management and control of a widely distributed virtual cluster having sensitive or otherwise immovable data sets through a controller. The Virtual Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters across multiple cloud platforms. In recognition of sensitive data, it can establish a single network overlay over widely distributed clusters. We define a novel class of data, notably immovable data that we call "pinned data", where the data is treated as a first-class citizen instead of being moved to where needed. We draw from our earlier work with a hierarchical data processing model, Hierarchical MapReduce (HMR), to process geographically distributed data, some of which are pinned data. The applications implemented in HMR use extended MapReduce model where computations are expressed as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information sharing among resources, applications, and data, the overall performance is improved. Experimental results show that the overhead of VCC is minimum. The HMR outperforms traditional MapReduce model while processing a particular class of applications. The evaluations also show that information sharing between resources and application through the VCC shortens the hierarchical data processing time, as well satisfying the constraints on the pinned data
    corecore