19 research outputs found

    Provable Bayesian Inference via Particle Mirror Descent

    Full text link
    Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes' rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, \emph{Particle Mirror Descent} (PMD), to iteratively approximate the posterior density. PMD is inspired by stochastic functional mirror descent where one descends in the density space using a small batch of data points at each iteration, and by particle filtering where one uses samples to approximate a function. We prove result of the first kind that, with mm particles, PMD provides a posterior density estimator that converges in terms of KLKL-divergence to the true posterior in rate O(1/m)O(1/\sqrt{m}). We demonstrate competitive empirical performances of PMD compared to several approximate inference algorithms in mixture models, logistic regression, sparse Gaussian processes and latent Dirichlet allocation on large scale datasets.Comment: 38 pages, 26 figure

    Adaptive Variational Particle Filtering in Non-stationary Environments

    Full text link
    Online convex optimization is a sequential prediction framework with the goal to track and adapt to the environment through evaluating proper convex loss functions. We study efficient particle filtering methods from the perspective of such a framework. We formulate an efficient particle filtering methods for the non-stationary environment by making connections with the online mirror descent algorithm which is known to be a universal online convex optimization algorithm. As a result of this connection, our proposed particle filtering algorithm proves to achieve optimal particle efficiency

    Mirror Descent Search and its Acceleration

    Full text link
    In recent years, attention has been focused on the relationship between black-box optimiza- tion problem and reinforcement learning problem. In this research, we propose the Mirror Descent Search (MDS) algorithm which is applicable both for black box optimization prob- lems and reinforcement learning problems. Our method is based on the mirror descent method, which is a general optimization algorithm. The contribution of this research is roughly twofold. We propose two essential algorithms, called MDS and Accelerated Mirror Descent Search (AMDS), and two more approximate algorithms: Gaussian Mirror Descent Search (G-MDS) and Gaussian Accelerated Mirror Descent Search (G-AMDS). This re- search shows that the advanced methods developed in the context of the mirror descent research can be applied to reinforcement learning problem. We also clarify the relationship between an existing reinforcement learning algorithm and our method. With two evaluation experiments, we show our proposed algorithms converge faster than some state-of-the-art methods.Comment: Gold open access in Journal of Robotics and Autonomous Systems: https://www.sciencedirect.com/science/article/pii/S092188901730754

    Wasserstein variational gradient descent: From semi-discrete optimal transport to ensemble variational inference

    Full text link
    Particle-based variational inference offers a flexible way of approximating complex posterior distributions with a set of particles. In this paper we introduce a new particle-based variational inference method based on the theory of semi-discrete optimal transport. Instead of minimizing the KL divergence between the posterior and the variational approximation, we minimize a semi-discrete optimal transport divergence. The solution of the resulting optimal transport problem provides both a particle approximation and a set of optimal transportation densities that map each particle to a segment of the posterior distribution. We approximate these transportation densities by minimizing the KL divergence between a truncated distribution and the optimal transport solution. The resulting algorithm can be interpreted as a form of ensemble variational inference where each particle is associated with a local variational approximation

    Guaranteed inference in topic models

    Full text link
    One of the core problems in statistical models is the estimation of a posterior distribution. For topic models, the problem of posterior inference for individual texts is particularly important, especially when dealing with data streams, but is often intractable in the worst case. As a consequence, existing methods for posterior inference are approximate and do not have any guarantee on neither quality nor convergence rate. In this paper, we introduce a provably fast algorithm, namely Online Maximum a Posteriori Estimation (OPE), for posterior inference in topic models. OPE has more attractive properties than existing inference approaches, including theoretical guarantees on quality and fast rate of convergence to a local maximal/stationary point of the inference problem. The discussions about OPE are very general and hence can be easily employed in a wide range of contexts. Finally, we employ OPE to design three methods for learning Latent Dirichlet Allocation from text streams or large corpora. Extensive experiments demonstrate some superior behaviors of OPE and of our new learning methods

    Scalable Training of Inference Networks for Gaussian-Process Models

    Full text link
    Inference in Gaussian process (GP) models is computationally challenging for large data, and often difficult to approximate with a small number of inducing points. We explore an alternative approximation that employs stochastic inference networks for a flexible inference. Unfortunately, for such networks, minibatch training is difficult to be able to learn meaningful correlations over function outputs for a large dataset. We propose an algorithm that enables such training by tracking a stochastic, functional mirror-descent algorithm. At each iteration, this only requires considering a finite number of input locations, resulting in a scalable and easy-to-implement algorithm. Empirical results show comparable and, sometimes, superior performance to existing sparse variational GP methods.Comment: ICML 2019. Update results added in the camera-ready versio

    Kernel Implicit Variational Inference

    Full text link
    Recent progress in variational inference has paid much attention to the flexibility of variational posteriors. One promising direction is to use implicit distributions, i.e., distributions without tractable densities as the variational posterior. However, existing methods on implicit posteriors still face challenges of noisy estimation and computational infeasibility when applied to models with high-dimensional latent variables. In this paper, we present a new approach named Kernel Implicit Variational Inference that addresses these challenges. As far as we know, for the first time implicit variational inference is successfully applied to Bayesian neural networks, which shows promising results on both regression and classification tasks.Comment: Published as a conference paper at ICLR 201

    A stochastic version of Stein Variational Gradient Descent for efficient sampling

    Full text link
    We propose in this work RBM-SVGD, a stochastic version of Stein Variational Gradient Descent (SVGD) method for efficiently sampling from a given probability measure and thus useful for Bayesian inference. The method is to apply the Random Batch Method (RBM) for interacting particle systems proposed by Jin et al to the interacting particle systems in SVGD. While keeping the behaviors of SVGD, it reduces the computational cost, especially when the interacting kernel has long range. Numerical examples verify the efficiency of this new version of SVGD

    Variable Selection with Rigorous Uncertainty Quantification using Deep Bayesian Neural Networks: Posterior Concentration and Bernstein-von Mises Phenomenon

    Full text link
    This work develops rigorous theoretical basis for the fact that deep Bayesian neural network (BNN) is an effective tool for high-dimensional variable selection with rigorous uncertainty quantification. We develop new Bayesian non-parametric theorems to show that a properly configured deep BNN (1) learns the variable importance effectively in high dimensions, and its learning rate can sometimes "break" the curse of dimensionality. (2) BNN's uncertainty quantification for variable importance is rigorous, in the sense that its 95% credible intervals for variable importance indeed covers the truth 95% of the time (i.e., the Bernstein-von Mises (BvM) phenomenon). The theoretical results suggest a simple variable selection algorithm based on the BNN's credible intervals. Extensive simulation confirms the theoretical findings and shows that the proposed algorithm outperforms existing classic and neural-network-based variable selection methods, particularly in high dimensions

    Exponential Family Estimation via Adversarial Dynamics Embedding

    Full text link
    We present an efficient algorithm for maximum likelihood estimation (MLE) of exponential family models, with a general parametrization of the energy function that includes neural networks. We exploit the primal-dual view of the MLE with a kinetics augmented model to obtain an estimate associated with an adversarial dual sampler. To represent this sampler, we introduce a novel neural architecture, dynamics embedding, that generalizes Hamiltonian Monte-Carlo (HMC). The proposed approach inherits the flexibility of HMC while enabling tractable entropy estimation for the augmented model. By learning both a dual sampler and the primal model simultaneously, and sharing parameters between them, we obviate the requirement to design a separate sampling procedure once the model has been trained, leading to more effective learning. We show that many existing estimators, such as contrastive divergence, pseudo/composite-likelihood, score matching, minimum Stein discrepancy estimator, non-local contrastive objectives, noise-contrastive estimation, and minimum probability flow, are special cases of the proposed approach, each expressed by a different (fixed) dual sampler. An empirical investigation shows that adapting the sampler during MLE can significantly improve on state-of-the-art estimators.Comment: Appearing in NeurIPS 2019 Vancouver, Canada; a preliminary version published in NeurIPS2018 Bayesian Deep Learning Worksho
    corecore