106,820 research outputs found

    The diversity and ecological role of protozoa in fresh waters

    Get PDF
    Protozoa feed on and regulate the abundance of most types of aquatic microorganisms, and they are an integral part of all aquatic microbial food webs. Being so small, aerobic protozoa thrive at low oxygen tensions, where they feed (largely unaffected by metazoan grazing) on the abundance of other microorganisms. In anaerobic environments, they are the only phagotrophic organisms, and they live in unique symbiotic consortia with methanogens, sulphate reducers and non-sulphur purple bacteria. The number of extant species of protozoa may be quite modest (the global number of ciliate species is estimated at 3000), and most of them probably have cosmopolitan distributions. This will undoubtedly make it easier to carry out further tasks, e.g. understanding the role of protozoan species diversity in the natural environment

    Prevalence of intestinal protozoa infection among school-aged children on Pemba Island, Tanzania, and effect of single-dose albendazole, nitazoxanide and albendazole-nitazoxanide.

    Get PDF
    Pathogenic intestinal protozoa infections are common in school-aged children in the developing world and they are frequently associated with malabsorption syndromes and gastrointestinal morbidity. Since diagnosis of these parasites is difficult, prevalence data on intestinal protozoa is scarce. We collected two stool samples from school-aged children on Pemba Island, Tanzania, as part of a randomized controlled trial before and 3 weeks after treatment with (i) single-dose albendazole (400 mg); (ii) single-dose nitazoxanide (1,000 mg); (iii) nitazoxanide-albendazole combination (1,000 mg--400 mg), with each drug given separately on two consecutive days; and (iv) placebo. Formalin-fixed stool samples were examined for the presence of intestinal protozoa using an ether-concentration method to determine the prevalence and estimate cure rates (CRs). Almost half (48.7%) of the children were diagnosed with at least one of the (potentially) pathogenic protozoa Giardia intestinalis, Entamoeba histolytica/E. dispar and Blastocystis hominis. Observed CRs were high for all treatment arms, including placebo. Nitazoxanide showed a significant effect compared to placebo against the non-pathogenic protozoon Entamoeba coli. Intestinal protozoa infections might be of substantial health relevance even in settings where they are not considered as a health problem. Examination of a single stool sample with the ether-concentration method lacks sensitivity for the diagnosis of intestinal protozoa, and hence, care is indicated when interpreting prevalence estimates and treatment effects

    Maximizing efficiency of rumen microbial protein production.

    Get PDF
    Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen

    Classification and introduction to the parasitic protozoa

    Get PDF

    In Vitro Rumen Fermentation and Anti Mastitis Bacterial Activity of Diet Containing Betel Leaf Meal (Piper Betle L.)

    Full text link
    The aims of this experiment was to study the inhibition effect of betel leaf meal (BLM) addition into concentrate diet on mastitis causing bacteria and on rumen fermentation condition. The study consisted of five dietary treatments of BLM level in concentrate feed, i.e., 0%, 2%, 4%, 6%, and 8% and four replicates of each treatment. The treatment diets together with napier grass in ratio of 40 : 60 were fermented using rumen liquor. All treatments were examined their antibacterial activity before and after fermentation. After four hours fermentation, supernatant of each samples were analyzed for VFA, NH3, number of bacteria and protozoa. Dry matter (DM) and organic matter (OM) digestibility were analyzed after 48 h fermentation. The results showed that before fermentation, 8% BLM addition caused the bigest (P<0.05) inhibition diameter of Staphylococcus spp. growth compared to other lower levels. However after fermentation there were no significant differences among the addition levels of BLM. Two per cent of BLM addition produced higher VFA (P<0.05) than the other addition levels. Ammoniaconcentration, dry matter (DM) and organic matter (OM) digestibility were not different among the treatments. Addition of BLM significantly (P<0.01) decreased protozoa number, but did not affect bacterial count. It is concluded that the addition of 2% BLM in concentrate feed can be used effectively to inhibit the growth of mastitis causing bacteria (Staphylococcus spp.) and does not disturb rumen fermentation condition

    Biodiversity in drinking water distribution systems:a brief review

    Get PDF
    In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems

    Parasitology

    Get PDF

    Microfluidics for effective concentration and sorting of waterborne protozoan pathogens

    Get PDF
    We report on an inertial focussing based microfluidics technology for concentrating waterborne protozoa, achieving a 96% recovery rate of Cryptosporidium parvum and 86% for Giardia lamblia at a throughput (mL/min) capable of replacing centrifugation. The approach can easily be extended to other parasites and also bacteria

    The Evolutionary Reorganization of Ontogeny and Origin of Multicellularity

    Get PDF
    The formation of morphogenetic mechanisms during emergence of multicellularity is discussed in this article

    Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

    Get PDF
    The Rowett Institute of Nutrition and Health and SRUC are funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The project was supported by DEFRA and DA funded Agricultural Greenhouse Gas Inventory Research Platform. Our thanks are due to the excellent support staff at the SRUC Beef Research Centre, Edinburgh, also to Graham Horgan of BioSS, Aberdeen, for conducting multivariate analysis.Peer reviewedPublisher PD
    corecore