376,973 research outputs found
The pick-up of cometary protons by the solar wind
The High Energy Range Spectrometer (HERS) of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of approximately 8 million km upstream of the bow shock of Comet Halley. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Downstream of the shock, the cometary protons could not be distinguished from the heated solar wind protons
Rapidity dependence of deuteron production in Au+Au collisions at = 200 GeV
We have measured the distributions of protons and deuterons produced in high
energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse
and longitudinal momentum. Near mid-rapidity we have also measured the
distribution of anti-protons and anti-deuterons. We present our results in the
context of coalescence models. In particular we extract the "volume of
homogeneity" and the average phase-space density for protons and anti-protons.
Near central rapidity the coalescence parameter and the space
averaged phase-space density are very similar for both protons and
anti-protons. For protons we see little variation of either or the
space averaged phase-space density as the rapidity increases from 0 to 3.
However both these quantities depend strongly on at all rapidities. These
results are in contrast to lower energy data where the proton and anti-proton
phase-space densities are different at =0 and both and depend
strongly on rapidity.Comment: Document updated after proofs received from PR
CMB bounds on dark matter annihilation: Nucleon energy-losses after recombination
We consider the propagation and energy losses of protons and anti-protons
produced by dark matter annihilation at redshifts 100<z<~2000. In the case of
dark matter annihilations into quarks, gluons and weak gauge bosons, protons
and anti-protons carry about 20% of the energy injected into e^\pm and
\gamma's, but their interactions are normally neglected when deriving cosmic
microwave background bounds from altered recombination histories. Here, we
follow numerically the energy-loss history of typical protons/antiprotons in
the cosmological medium. We show that about half of their energy is channeled
into photons and e^\pm, and we present a simple prescription to estimate the
corresponding strengthening of the cosmic microwave background bounds on the
dark matter annihilation cross section.Comment: 5 pages, 2 figures. References added. Matches version published in
PR
Study on the spectrum of the injected relativistic protons
About 10TeV gamma-ray emission within 10 pc region from the Galactic Center
had been reported by 4 independent groups. Considering that this TeV gamma-ray
emission is produced via a hadronic model, and the relativistic protons came
from the tidal disruption of stars by massive black holes, we investigate the
spectral nature of the injected relativistic protons required by the hadronic
model. The calculation was carried on the tidal disruption of the different
types of stars and the different propagation mechanisms of protons in the
interstellar medium. Compared with the observation data from HESS, we find for
the best fitting that the power-law index of the spectrum of the injected
protons is about -1.9, when a red giant star is tidally disrupted, and the
effective confinement of protons diffusion mechanism is adopted.Comment: 2 pages, IAU Symposium 25
Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars
The neutrino emission due to formation and breaking of Cooper pairs of
protons in superconducting cores of neutron stars is considered with taking
into account the electromagnetic coupling of protons to ambient electrons. It
is shown that collective response of electrons to the proton quantum transition
contributes coherently to the complete interaction with a neutrino field and
enhances the neutrino-pair production. Our calculation shows that the
contribution of the vector weak current to the emissivity of
protons is much larger than that calculated by different authors without taking
into account the plasma effects. Partial contribution of the pairing protons to
the total neutrino radiation from the neutron star core is very sensitive to
the critical temperatures for the proton and neutron pairing. We show domains
of these parameters where the neutrino radiation, caused by a singlet-state
pairing of protons is dominating.Comment: 34 pages, including 9 figure
Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields
Strongly interacting neutrinos as the highest energy cosmic rays
We show that all features of the ultrahigh energy cosmic ray spectrum from
10^{17} eV to 10^{21} eV can be described with a simple power-like injection
spectrum of protons under the assumption that the neutrino-nucleon
cross-section is significantly enhanced at center of mass energies above
\approx 100 TeV. In our scenario, the cosmogenic neutrinos produced during the
propagation of protons through the cosmic microwave background initiate air
showers in the atmosphere, just as the protons. The total air shower spectrum
induced by protons and neutrinos shows excellent agreement with the
observations. A particular possibility for a large neutrino-nucleon
cross-section exists within the Standard Model through electroweak
instanton-induced processes.Comment: 8 pages, 4 figures, talk given at Beyond the Desert '03, Castle
Ringberg, 9-14 June, 200
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
- …
