224,871 research outputs found
Folding Lennard-Jones proteins by a contact potential
We studied the possibility to approximate a Lennard Jones interaction by a
pairwise contact potential. First we used a Lennard-Jones potential to design
off-lattice, protein-like heteropolymer sequences, whose lowest energy (native)
conformations were then identified by Molecular Dynamics. Then we turned to
investigate whether one can find a pairwise contact potential, whose ground
states are the contact maps associated with these native conformations. We show
that such a requirement cannot be satisfied exactly - i.e. no such contact
parameters exist. Nevertheless, we found that one can find contact energy
parameters for which an energy minimization procedure, acting in the space of
contact maps, yields maps whose corresponding structures are close to the
native ones. Finally we show that when these structures are used as the initial
point of a Molecular Dynamics energy minimization process, the correct native
folds are recovered with high probability.Comment: submitted to "Proteins: Structure, Function, and Genetics
Heterologous Expression and Purification of \u3cem\u3eVibrio proteolyticus (Aeromonas proteolytica)\u3c/em\u3e Aminopeptidase: A Rapid Protocol
Metalloaminopeptidases (mAPs) are enzymes that are involved in HIV infectivity, tumor growth and metastasis, angiogenesis, and bacterial infection. Investigation of structure–function relationships in mAPs is a prerequisite to rational design of anti-mAP chemotherapeutics. The most intensively studied member of the biomedically important dinuclear mAPs is the prototypical secreted Vibrio proteolyticus di-zinc aminopeptidase (VpAP). The wild-type enzyme is readily purified from the supernatant of cultures of V. proteolyticus, but recombinant variants require expression in Escherichia coli. A greatly improved system for the purification of recombinant VpAP is described. A VpAP-(His)6 polypeptide, containing an N-terminal propeptide, and a C-terminal (His)6 adduct, was purified by metal ion affinity chromatography from the supernatant of cultures of E. coli. This single step replaced the sequence of (NH4)2SO4 fractionation, and anion-exchange and hydrophobic interaction chromatographic separations of earlier methods. Traditionally, recombinant VpAP proenzyme has been treated with proteinase K and with heat (70 °C), to remove the N- and C-terminal regions, and yield the mature active enzyme. This method is unsuitable for VpAP variants that are unstable towards these treatments. In the new method, the hitherto noted, but not fully appreciated, ability of VpAP to autocatalyze the hydrolysis of the N-terminal propeptide and C-terminal regions was exploited; extensive dialysis of the highly purified VpAP-(His)6 full-length polypeptide yielded the mature active protein without recourse to proteinase K or heat treatment. Purification of variants that have previously defied isolation as mature forms of the protein was thus carried out
Predicting diverse M-best protein contact maps
Protein contacts contain important information for protein structure and
functional study, but contact prediction from sequence information remains very
challenging. Recently evolutionary coupling (EC) analysis, which predicts
contacts by detecting co-evolved residues (or columns) in a multiple sequence
alignment (MSA), has made good progress due to better statistical assessment
techniques and high-throughput sequencing. Existing EC analysis methods predict
only a single contact map for a given protein, which may have low accuracy
especially when the protein under prediction does not have a large number of
sequence homologs. Analogous to ab initio folding that usually predicts a few
possible 3D models for a given protein sequence, this paper presents a novel
structure learning method that can predict a set of diverse contact maps for a
given protein sequence, in which the best solution usually has much better
accuracy than the first one. Our experimental tests show that for many test
proteins, the best out of 5 solutions generated by our method has accuracy at
least 0.1 better than the first one when the top L/5 or L/10 (L is the sequence
length) predicted long-range contacts are evaluated, especially for protein
families with a small number of sequence homologs. Our best solutions also have
better quality than those generated by the two popular EC methods Evfold and
PSICOV.Comment: Accepted as oral presentation at Computational Structural
Bioinformatics Workshop (In Conjunction With IEEE BIBM 2015
NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps
Molecular biology knowledge can be systematically represented in a
computer-readable form as a comprehensive map of molecular interactions. There
exist a number of maps of molecular interactions containing detailed
description of various cell mechanisms. It is difficult to explore these large
maps, to comment their content and to maintain them. Though there exist several
tools addressing these problems individually, the scientific community still
lacks an environment that combines these three capabilities together. NaviCell
is a web-based environment for exploiting large maps of molecular interactions,
created in CellDesigner, allowing their easy exploration, curation and
maintenance. NaviCell combines three features: (1) efficient map browsing based
on Google Maps engine; (2) semantic zooming for viewing different levels of
details or of abstraction of the map and (3) integrated web-based blog for
collecting the community feedback. NaviCell can be easily used by experts in
the field of molecular biology for studying molecular entities of their
interest in the context of signaling pathways and cross-talks between pathways
within a global signaling network. NaviCell allows both exploration of detailed
molecular mechanisms represented on the map and a more abstract view of the map
up to a top-level modular representation. NaviCell facilitates curation,
maintenance and updating the comprehensive maps of molecular interactions in an
interactive fashion due to an imbedded blogging system. NaviCell provides an
easy way to explore large-scale maps of molecular interactions, thanks to the
Google Maps and WordPress interfaces, already familiar to many users. Semantic
zooming used for navigating geographical maps is adopted for molecular maps in
NaviCell, making any level of visualization meaningful to the user. In
addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte
The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity
The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus
A tractable genotype-phenotype map for the self-assembly of protein quaternary structure
The mapping between biological genotypes and phenotypes is central to the
study of biological evolution. Here we introduce a rich, intuitive, and
biologically realistic genotype-phenotype (GP) map, that serves as a model of
self-assembling biological structures, such as protein complexes, and remains
computationally and analytically tractable. Our GP map arises naturally from
the self-assembly of polyomino structures on a 2D lattice and exhibits a number
of properties: (genotypes vastly outnumber phenotypes),
(genotypic redundancy varies greatly between
phenotypes), (phenotypes consist
of disconnected mutational networks) and (most
phenotypes can be reached in a small number of mutations). We also show that
the mutational robustness of phenotypes scales very roughly logarithmically
with phenotype redundancy and is positively correlated with phenotypic
evolvability. Although our GP map describes the assembly of disconnected
objects, it shares many properties with other popular GP maps for connected
units, such as models for RNA secondary structure or the HP lattice model for
protein tertiary structure. The remarkable fact that these important properties
similarly emerge from such different models suggests the possibility that
universal features underlie a much wider class of biologically realistic GP
maps.Comment: 12 pages, 6 figure
- …
