2 research outputs found

    On The Deployment of Tweak-in-Plaintext Protection Against Differential Fault Analysis

    Get PDF
    In an article from HOST 2018, which appears in extended form in the Cryptology ePrint Archive, Baksi, Bhasin, Breier, Khairallah, and Peyrin proposed the tweak-in-plaintext method to protect block ciphers against a differential fault analysis (DFA). We argue that this method lacks existential motivation as neither of its two envisioned use cases, i.e., the electronic codebook (ECB) and the cipher block chaining (CBC) modes of operation, is competitive. Furthermore, in a variant of the method where nonces are generated using a linear-feedback shift register (LFSR), several security problems have not been anticipated for. Finally, we analyze the security level against a brute-force DFA more rigorously than in the original work

    Protecting block ciphers against differential fault attacks without re-keying

    Get PDF
    In this article, we propose a new method to protect block cipher implementations against Differential Fault Attacks (DFA). Our strategy, so-called “Tweak-in-Plaintext”, ensures that an uncontrolled value ('tweak-in') is inserted into some part of the block cipher plaintext, thus effectively rendering DFA much harder to perform. Our method is extremely simple yet presents many advantages when compared to previous solutions proposed at AFRICACRYPT 2010 or CARDIS 2015. Firstly, we do not need any Tweakable block cipher, nor any related-key security assumption (we do not perform any re-keying). Moreover, performance for lightweight applications is improved, and we do not need to send any extra data. Finally, our scheme can be directly used with standard block ciphers such as AES or PRESENT. Experimental results show that the throughput overheads, for incorporating our scheme into AES-128, range between ≈ 5% to ≈ 26.9% for software, and between ≈ 3.1% to ≈ 25% for hardware implementations; depending on the tweak-in size.NRF (Natl Research Foundation, S’pore)Accepted versio
    corecore