58,529 research outputs found

    Eagleworks Laboratories: Advanced Propulsion Physics Research

    Get PDF
    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics

    Closed Loop solar array-ion thruster system with power control circuitry

    Get PDF
    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power

    Flat-plate solar array project. Volume 1: Executive summary

    Get PDF
    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project

    Experiment-based kinematic validation of numeric modeling and simulated control of an untethered biomimetic microrobot in channel

    Get PDF
    Modeling and control of swimming untethered microrobots are important for future therapeutic medical applications. Bio-inspired propulsion methods emerge as realistic substitutes for hydrodynamic thrust generation in micro realm. Accurate modeling, power supply, and propulsion-means directly affect microrobot motility and maneuverability. In this work, motility of bacteria-like untethered helical microrobots in channels is modeled with the resistive force theory coupled with motor dynamics. Results are validated with private experiments conducted on cm-scale prototypes fully submerged in Si-oil filled glass channel. Li-Po battery is utilized as the onboard power supply. Helical tail rotation is triggered by an IR remote control. It is observed that time-averaged velocities calculated by the model agree well with experimental results. Finally, time-dependent performance of a hypothetical model-based position control scheme is simulated with upstream flow as disturbance

    Contracts, grants and funding summary of supersonic cruise research and variable-cycle engine technology programs, 1972 - 1982

    Get PDF
    NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs

    The role of symmetry in driven propulsion at low Reynolds number

    Full text link
    We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, P^\widehat{P}, and charge conjugation, C^\widehat{C}) establish correspondence between propulsive states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical (P^\widehat{P}-even) objects exhibit no net propulsion while individual less symmetrical (C^P^\widehat{C}\widehat{P}-even) propellers do propel. Particular magnetization orientation, rendering the shape C^P^\widehat{C}\widehat{P}-odd, yields unidirectional motion typically associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral (P^\widehat{P}- and C^P^\widehat{C}\widehat{P}-even) planar shape with an induced electric dipole that can propel by electro-rotation. We thereby show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number.Comment: 5 pages, 5 figure

    JANNAF Liquid Rocket Combustion Instability Panel Research Recommendations

    Get PDF
    The Joint Army, Navy, NASA, Air Force (JANNAF) Liquid Rocket Combustion Instability Panel was formed in 1988, drawing its members from industry, academia, and government experts. The panel was chartered to address the needs of near-term engine development programs and to make recommendations whose implementation would provide not only sufficient data but also the analysis capabilities to design stable and efficient engines. The panel was also chartered to make long-term recommendations toward developing mechanistic analysis models that would not be limited by design geometry or operating regime. These models would accurately predict stability and thereby minimize the amount of subscale testing for anchoring. The panel has held workshops on acoustic absorbing devices and combustion instability computational methods. At these workshops, research projects that would meet the panel's charter were suggested. The panel's conclusions about the work that needs to be done and recommendations on how to approach it, based on evaluation of the suggested research projects, are presented

    Technology for large space systems: A special bibliography with indexes (supplement 04)

    Get PDF
    This bibliography lists 259 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1980 and December 31, 1980. Its purpose is to provide information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology Program. Subject matter is grouped according to systems, interactive analysis and design. Structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments
    corecore