82,907 research outputs found

    Uniform Definability in Propositional Dependence Logic

    Full text link
    Both propositional dependence logic and inquisitive logic are expressively complete. As a consequence, every formula with intuitionistic disjunction or intuitionistic implication can be translated equivalently into a formula in the language of propositional dependence logic without these two connectives. We show that although such a (non-compositional) translation exists, neither intuitionistic disjunction nor intuitionistic implication is uniformly definable in propositional dependence logic

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Decidability of quantified propositional intuitionistic logic and S4 on trees

    Full text link
    Quantified propositional intuitionistic logic is obtained from propositional intuitionistic logic by adding quantifiers \forall p, \exists p over propositions. In the context of Kripke semantics, a proposition is a subset of the worlds in a model structure which is upward closed. Kremer (1997) has shown that the quantified propositional intuitionistic logic H\pi+ based on the class of all partial orders is recursively isomorphic to full second-order logic. He raised the question of whether the logic resulting from restriction to trees is axiomatizable. It is shown that it is, in fact, decidable. The methods used can also be used to establish the decidability of modal S4 with propositional quantification on similar types of Kripke structures.Comment: v2, 9 pages, corrections and additions; v1 8 page

    Complexity of validity for propositional dependence logics

    Full text link
    We study the validity problem for propositional dependence logic, modal dependence logic and extended modal dependence logic. We show that the validity problem for propositional dependence logic is NEXPTIME-complete. In addition, we establish that the corresponding problem for modal dependence logic and extended modal dependence logic is NEXPTIME-hard and in NEXPTIME^NP.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    On Equivalence of Infinitary Formulas under the Stable Model Semantics

    Full text link
    Propositional formulas that are equivalent in intuitionistic logic, or in its extension known as the logic of here-and-there, have the same stable models. We extend this theorem to propositional formulas with infinitely long conjunctions and disjunctions and show how to apply this generalization to proving properties of aggregates in answer set programming. To appear in Theory and Practice of Logic Programming (TPLP)

    De Jongh's Theorem for Intuitionistic Zermelo-Fraenkel Set Theory

    Get PDF
    We prove that the propositional logic of intuitionistic set theory IZF is intuitionistic propositional logic IPC. More generally, we show that IZF has the de Jongh property with respect to every intermediate logic that is complete with respect to a class of finite trees. The same results follow for CZF.Comment: 12 page

    Propositional computability logic I

    Full text link
    In the same sense as classical logic is a formal theory of truth, the recently initiated approach called computability logic is a formal theory of computability. It understands (interactive) computational problems as games played by a machine against the environment, their computability as existence of a machine that always wins the game, logical operators as operations on computational problems, and validity of a logical formula as being a scheme of "always computable" problems. The present contribution gives a detailed exposition of a soundness and completeness proof for an axiomatization of one of the most basic fragments of computability logic. The logical vocabulary of this fragment contains operators for the so called parallel and choice operations, and its atoms represent elementary problems, i.e. predicates in the standard sense. This article is self-contained as it explains all relevant concepts. While not technically necessary, however, familiarity with the foundational paper "Introduction to computability logic" [Annals of Pure and Applied Logic 123 (2003), pp.1-99] would greatly help the reader in understanding the philosophy, underlying motivations, potential and utility of computability logic, -- the context that determines the value of the present results. Online introduction to the subject is available at http://www.cis.upenn.edu/~giorgi/cl.html and http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi
    corecore