82,907 research outputs found
Uniform Definability in Propositional Dependence Logic
Both propositional dependence logic and inquisitive logic are expressively
complete. As a consequence, every formula with intuitionistic disjunction or
intuitionistic implication can be translated equivalently into a formula in the
language of propositional dependence logic without these two connectives. We
show that although such a (non-compositional) translation exists, neither
intuitionistic disjunction nor intuitionistic implication is uniformly
definable in propositional dependence logic
Reasoning about Minimal Belief and Negation as Failure
We investigate the problem of reasoning in the propositional fragment of
MBNF, the logic of minimal belief and negation as failure introduced by
Lifschitz, which can be considered as a unifying framework for several
nonmonotonic formalisms, including default logic, autoepistemic logic,
circumscription, epistemic queries, and logic programming. We characterize the
complexity and provide algorithms for reasoning in propositional MBNF. In
particular, we show that entailment in propositional MBNF lies at the third
level of the polynomial hierarchy, hence it is harder than reasoning in all the
above mentioned propositional formalisms for nonmonotonic reasoning. We also
prove the exact correspondence between negation as failure in MBNF and negative
introspection in Moore's autoepistemic logic
Decidability of quantified propositional intuitionistic logic and S4 on trees
Quantified propositional intuitionistic logic is obtained from propositional
intuitionistic logic by adding quantifiers \forall p, \exists p over
propositions. In the context of Kripke semantics, a proposition is a subset of
the worlds in a model structure which is upward closed. Kremer (1997) has shown
that the quantified propositional intuitionistic logic H\pi+ based on the class
of all partial orders is recursively isomorphic to full second-order logic. He
raised the question of whether the logic resulting from restriction to trees is
axiomatizable. It is shown that it is, in fact, decidable. The methods used can
also be used to establish the decidability of modal S4 with propositional
quantification on similar types of Kripke structures.Comment: v2, 9 pages, corrections and additions; v1 8 page
Complexity of validity for propositional dependence logics
We study the validity problem for propositional dependence logic, modal
dependence logic and extended modal dependence logic. We show that the validity
problem for propositional dependence logic is NEXPTIME-complete. In addition,
we establish that the corresponding problem for modal dependence logic and
extended modal dependence logic is NEXPTIME-hard and in NEXPTIME^NP.Comment: In Proceedings GandALF 2014, arXiv:1408.556
On Equivalence of Infinitary Formulas under the Stable Model Semantics
Propositional formulas that are equivalent in intuitionistic logic, or in its
extension known as the logic of here-and-there, have the same stable models. We
extend this theorem to propositional formulas with infinitely long conjunctions
and disjunctions and show how to apply this generalization to proving
properties of aggregates in answer set programming. To appear in Theory and
Practice of Logic Programming (TPLP)
De Jongh's Theorem for Intuitionistic Zermelo-Fraenkel Set Theory
We prove that the propositional logic of intuitionistic set theory IZF is
intuitionistic propositional logic IPC. More generally, we show that IZF has
the de Jongh property with respect to every intermediate logic that is complete
with respect to a class of finite trees. The same results follow for CZF.Comment: 12 page
Propositional computability logic I
In the same sense as classical logic is a formal theory of truth, the
recently initiated approach called computability logic is a formal theory of
computability. It understands (interactive) computational problems as games
played by a machine against the environment, their computability as existence
of a machine that always wins the game, logical operators as operations on
computational problems, and validity of a logical formula as being a scheme of
"always computable" problems. The present contribution gives a detailed
exposition of a soundness and completeness proof for an axiomatization of one
of the most basic fragments of computability logic. The logical vocabulary of
this fragment contains operators for the so called parallel and choice
operations, and its atoms represent elementary problems, i.e. predicates in the
standard sense. This article is self-contained as it explains all relevant
concepts. While not technically necessary, however, familiarity with the
foundational paper "Introduction to computability logic" [Annals of Pure and
Applied Logic 123 (2003), pp.1-99] would greatly help the reader in
understanding the philosophy, underlying motivations, potential and utility of
computability logic, -- the context that determines the value of the present
results. Online introduction to the subject is available at
http://www.cis.upenn.edu/~giorgi/cl.html and
http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi
- …
