17,166 research outputs found

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (xyA(x,y))wxA(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (xyA(x,y))zxy(yT(x,z)A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Signatures and Induction Principles for Higher Inductive-Inductive Types

    Full text link
    Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code

    Impredicative Encodings of (Higher) Inductive Types

    Full text link
    Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant {\eta}-equalities and consequently do not admit dependent eliminators. To recover {\eta} and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1

    Functions out of Higher Truncations

    Get PDF
    In homotopy type theory, the truncation operator ||-||n (for a number n > -2) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate into n-types, which makes it hard to construct functions ||A||n -> B if B is not an n-type. This makes it desirable to derive more powerful elimination theorems. We show a first general result: If B is an (n+1)-type, then functions ||A||n -> B correspond exactly to functions A -> B which are constant on all (n+1)-st loop spaces. We give one "elementary" proof and one proof that uses a higher inductive type, both of which require some effort. As a sample application of our result, we show that we can construct "set-based" representations of 1-types, as long as they have "braided" loop spaces. The main result with one of its proofs and the application have been formalised in Agda.Comment: 15 pages; to appear at CSL'1

    Lower Bounds for RAMs and Quantifier Elimination

    Full text link
    We are considering RAMs NnN_{n}, with wordlength n=2dn=2^{d}, whose arithmetic instructions are the arithmetic operations multiplication and addition modulo 2n2^{n}, the unary function min{2x,2n1} \min\lbrace 2^{x}, 2^{n}-1\rbrace, the binary functions x/y\lfloor x/y\rfloor (with x/0=0\lfloor x/0 \rfloor =0), max(x,y)\max(x,y), min(x,y)\min(x,y), and the boolean vector operations ,,¬\wedge,\vee,\neg defined on 0,10,1 sequences of length nn. It also has the other RAM instructions. The size of the memory is restricted only by the address space, that is, it is 2n2^{n} words. The RAMs has a finite instruction set, each instruction is encoded by a fixed natural number independently of nn. Therefore a program PP can run on each machine NnN_{n}, if n=2dn=2^{d} is sufficiently large. We show that there exists an ϵ>0\epsilon>0 and a program PP, such that it satisfies the following two conditions. (i) For all sufficiently large n=2dn=2^{d}, if PP running on NnN_{n} gets an input consisting of two words aa and bb, then, in constant time, it gives a 0,10,1 output Pn(a,b)P_{n}(a,b). (ii) Suppose that QQ is a program such that for each sufficiently large n=2dn=2^{d}, if QQ, running on NnN_{n}, gets a word aa of length nn as an input, then it decides whether there exists a word bb of length nn such that Pn(a,b)=0P_{n}(a,b)=0. Then, for infinitely many positive integers dd, there exists a word aa of length n=2dn=2^{d}, such that the running time of QQ on NnN_{n} at input aa is at least ϵ(logd)12(loglogd)1\epsilon (\log d)^{\frac{1}{2}} (\log \log d)^{-1}

    Two-Level Type Theory and Applications

    Get PDF
    We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level nn can be constructed in HoTT for any externally fixed natural number nn. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where nn will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.Comment: 53 page

    Higher Homotopies in a Hierarchy of Univalent Universes

    Full text link
    For Martin-Lof type theory with a hierarchy U(0): U(1): U(2): ... of univalent universes, we show that U(n) is not an n-type. Our construction also solves the problem of finding a type that strictly has some high truncation level without using higher inductive types. In particular, U(n) is such a type if we restrict it to n-types. We have fully formalized and verified our results within the dependently typed language and proof assistant Agda.Comment: v1: 30 pages, main results and a connectedness construction; v2: 14 pages, only main results, improved presentation, final journal version, ancillary files with electronic appendix; v3: content unchanged, different documentclass reduced the number of pages to 1

    A realizability semantics for inductive formal topologies, Church's Thesis and Axiom of Choice

    Get PDF
    We present a Kleene realizability semantics for the intensional level of the Minimalist Foundation, for short mtt, extended with inductively generated formal topologies, Church's thesis and axiom of choice. This semantics is an extension of the one used to show consistency of the intensional level of the Minimalist Foundation with the axiom of choice and formal Church's thesis in previous work. A main novelty here is that such a semantics is formalized in a constructive theory represented by Aczel's constructive set theory CZF extended with the regular extension axiom
    corecore