9,375 research outputs found

    The evolutionary origins of volition

    Get PDF
    It appears to be a straightforward implication of distributed cognition principles that there is no integrated executive control system (e.g. Brooks 1991, Clark 1997). If distributed cognition is taken as a credible paradigm for cognitive science this in turn presents a challenge to volition because the concept of volition assumes integrated information processing and action control. For instance the process of forming a goal should integrate information about the available action options. If the goal is acted upon these processes should control motor behavior. If there were no executive system then it would seem that processes of action selection and performance couldn’t be functionally integrated in the right way. The apparently centralized decision and action control processes of volition would be an illusion arising from the competitive and cooperative interaction of many relatively simple cognitive systems. Here I will make a case that this conclusion is not well-founded. Prima facie it is not clear that distributed organization can achieve coherent functional activity when there are many complex interacting systems, there is high potential for interference between systems, and there is a need for focus. Resolving conflict and providing focus are key reasons why executive systems have been proposed (Baddeley 1986, Norman and Shallice 1986, Posner and Raichle 1994). This chapter develops an extended theoretical argument based on this idea, according to which selective pressures operating in the evolution of cognition favor high order control organization with a ‘highest-order’ control system that performs executive functions

    Consciousness CLEARS the Mind

    Full text link
    A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    The Laminar Architecture of Visual Cortex and Image Processing Technology

    Full text link
    The mammalian neocortex is organized into layers which include circuits that form functional columns in cortical maps. A major unsolved problem concerns how bottom-up, top-down, and horizontal interactions are organized within cortical layers to generate adaptive behaviors. This article summarizes a model, called the LAMINART model, of how these interactions help visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex stably grows and tunes its circuits to match environmental constraints. Such Laminar Computing completes perceptual groupings that realize the property of Analog Coherence, whereby winning groupings bind together their inducing features without losing their ability to represent analog values of these features. Laminar Computing also efficiently unifies the computational requirements of preattentive filtering and grouping with those of attentional selection. It hereby shows how Adaptive Resonance Theory (ART) principles may be realized within the laminar circuits of neocortex. Applications include boundary segmentation and surface filling-in algorithms for processing Synthetic Aperture Radar images.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-95-1-0657

    The Laminar Organization of Visual Cortex: A Unified View of Development, Learning, and Grouping

    Full text link
    Why are all sensory and cognitive neocortex organized into layered circuits? How do these layers organize circuits that form functional columns in cortical maps? How do bottom-up, top-down, and horizontal interactions within the cortical layers generate adaptive behaviors. This chapter summarizes an evolving neural model which suggests how these interactions help the visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. It is suggested that the mechanisms which achieve property (3) imply properties of (I) and (2). New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Linking Attention to Learning, Expectation, Competition, and Consciousness

    Full text link
    The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Brain Learning, Attention, and Consciousness

    Full text link
    The processes whereby our brains continue to learn about a changing world in a stable fashion throughout life are proposed to lead to conscious experiences. These processes include the learning of top-down expectations, the matching of these expectations against bottom-up data, the focusing of attention upon the expected clusters of information, and the development of resonant states between bottom-up and top-down processes as they reach an attentive consensus between what is expected and what is there in the outside world. It is suggested that all conscious states in the brain are resonant states, and that these resonant states trigger learning of sensory and cognitive representations. The model which summarize these concepts are therefore called Adaptive Resonance Theory, or ART, models. Psychophysical and neurobiological data in support of ART are presented from early vision, visual object recognition, auditory streaming, variable-rate speech perception, somatosensory perception, and cognitive-emotional interactions, among others. It is noted that ART mechanisms seem to be operative at all levels of the visual system, and it is proposed how these mechanisms are realized by known laminar circuits of visual cortex. It is predicted that the same circuit realization of ART mechanisms will be found in the laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized concerning how some visual percepts may be visibly, or modally, perceived, whereas amoral percepts may be consciously recognized even though they are perceptually invisible. It is also suggested that sensory and cognitive processing in the What processing stream of the brain obey top-down matching and learning laws that arc often complementary to those used for spatial and motor processing in the brain's Where processing stream. This enables our sensory and cognitive representations to maintain their stability a.s we learn more about the world, while allowing spatial and motor representations to forget learned maps and gains that are no longer appropriate as our bodies develop and grow from infanthood to adulthood. Procedural memories are proposed to be unconscious because the inhibitory matching process that supports these spatial and motor processes cannot lead to resonance.Defense Advance Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657); National Science Foundation (IRI-97-20333

    Linking Visual Development and Learning to Information Processing: Preattentive and Attentive Brain Dynamics

    Full text link
    National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657
    • …
    corecore