38,595 research outputs found

    LWPR: A Scalable Method for Incremental Online Learning in High Dimensions

    Get PDF
    Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear func- tion approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computa- tionally efficient and numerically robust, each local model performs the regression analysis with a small number of univariate regressions in selected directions in input space in the spirit of partial least squares regression. We discuss when and how local learning techniques can successfully work in high dimensional spaces and compare various techniques for local dimensionality reduction before finally deriving the LWPR algorithm. The properties of LWPR are that it i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic leave-one-out cross validation for learning without the need to memorize training data, iii) adjusts its weighting kernels based only on local information in order to minimize the danger of negative interference of incremental learning, iv) has a computational complexity that is linear in the num- ber of inputs, and v) can deal with a large number of - possibly redundant - inputs, as shown in various empirical evaluations with up to 50 dimensional data sets. For a probabilistic interpreta- tion, predictive variance and confidence intervals are derived. To our knowledge, LWPR is the first truly incremental spatially localized learning method that can successfully and efficiently operate in very high dimensional spaces

    Private Incremental Regression

    Full text link
    Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine learning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of d\approx\sqrt{d}, where dd is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.Comment: To appear in PODS 201
    corecore