3,340 research outputs found

    Dirichlet Bayesian Network Scores and the Maximum Relative Entropy Principle

    Full text link
    A classic approach for learning Bayesian networks from data is to identify a maximum a posteriori (MAP) network structure. In the case of discrete Bayesian networks, MAP networks are selected by maximising one of several possible Bayesian Dirichlet (BD) scores; the most famous is the Bayesian Dirichlet equivalent uniform (BDeu) score from Heckerman et al (1995). The key properties of BDeu arise from its uniform prior over the parameters of each local distribution in the network, which makes structure learning computationally efficient; it does not require the elicitation of prior knowledge from experts; and it satisfies score equivalence. In this paper we will review the derivation and the properties of BD scores, and of BDeu in particular, and we will link them to the corresponding entropy estimates to study them from an information theoretic perspective. To this end, we will work in the context of the foundational work of Giffin and Caticha (2007), who showed that Bayesian inference can be framed as a particular case of the maximum relative entropy principle. We will use this connection to show that BDeu should not be used for structure learning from sparse data, since it violates the maximum relative entropy principle; and that it is also problematic from a more classic Bayesian model selection perspective, because it produces Bayes factors that are sensitive to the value of its only hyperparameter. Using a large simulation study, we found in our previous work (Scutari, 2016) that the Bayesian Dirichlet sparse (BDs) score seems to provide better accuracy in structure learning; in this paper we further show that BDs does not suffer from the issues above, and we recommend to use it for sparse data instead of BDeu. Finally, will show that these issues are in fact different aspects of the same problem and a consequence of the distributional assumptions of the prior.Comment: 20 pages, 4 figures; extended version submitted to Behaviormetrik

    On Pruning for Score-Based Bayesian Network Structure Learning

    Get PDF
    Many algorithms for score-based Bayesian network structure learning (BNSL), in particular exact ones, take as input a collection of potentially optimal parent sets for each variable in the data. Constructing such collections naively is computationally intensive since the number of parent sets grows exponentially with the number of variables. Thus, pruning techniques are not only desirable but essential. While good pruning rules exist for the Bayesian Information Criterion (BIC), current results for the Bayesian Dirichlet equivalent uniform (BDeu) score reduce the search space very modestly, hampering the use of the (often preferred) BDeu. We derive new non-trivial theoretical upper bounds for the BDeu score that considerably improve on the state-of-the-art. Since the new bounds are mathematically proven to be tighter than previous ones and at little extra computational cost, they are a promising addition to BNSL methods

    An Empirical-Bayes Score for Discrete Bayesian Networks

    Full text link
    Bayesian network structure learning is often performed in a Bayesian setting, by evaluating candidate structures using their posterior probabilities for a given data set. Score-based algorithms then use those posterior probabilities as an objective function and return the maximum a posteriori network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U) graph prior (Heckerman et al., 1995). Its favourable theoretical properties descend from assuming a uniform prior both on the space of the network structures and on the space of the parameters of the network. In this paper, we revisit the limitations of these assumptions; and we introduce an alternative set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning the structure of the network and in predicting new observations, while not being computationally more complex to estimate.Comment: 12 pages, PGM 201

    Bayesian Learning of Sum-Product Networks

    Full text link
    Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning. First, we decompose the problem into i) laying out a computational graph, and ii) learning the so-called scope function over the graph. The first is rather unproblematic and akin to neural network architecture validation. The second represents the effective structure of the SPN and needs to respect the usual structural constraints in SPN, i.e. completeness and decomposability. While representing and learning the scope function is somewhat involved in general, in this paper, we propose a natural parametrisation for an important and widely used special case of SPNs. These structural parameters are incorporated into a Bayesian model, such that simultaneous structure and parameter learning is cast into monolithic Bayesian posterior inference. In various experiments, our Bayesian SPNs often improve test likelihoods over greedy SPN learners. Further, since the Bayesian framework protects against overfitting, we can evaluate hyper-parameters directly on the Bayesian model score, waiving the need for a separate validation set, which is especially beneficial in low data regimes. Bayesian SPNs can be applied to heterogeneous domains and can easily be extended to nonparametric formulations. Moreover, our Bayesian approach is the first, which consistently and robustly learns SPN structures under missing data.Comment: NeurIPS 2019; See conference page for supplemen
    • …
    corecore