1,458 research outputs found

    Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error

    Get PDF
    Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H1H^1 norm best approximation error estimates for H2H^2 functions hold for arbitrary triangulations. However, similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on the example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily slow speed. The results complement analogous findings for conforming P1 elements.Comment: 23 pages, 10 figure

    A Nonconforming Finite Element Approximation for the von Karman Equations

    Get PDF
    In this paper, a nonconforming finite element method has been proposed and analyzed for the von Karman equations that describe bending of thin elastic plates. Optimal order error estimates in broken energy and H1H^1 norms are derived under minimal regularity assumptions. Numerical results that justify the theoretical results are presented.Comment: The paper is submitted to an international journa

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure
    corecore