2,525 research outputs found

    Bilinear Graph Neural Network with Neighbor Interactions

    Full text link
    Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data. Existing efforts on GNN have largely defined the graph convolution as a weighted sum of the features of the connected nodes to form the representation of the target node. Nevertheless, the operation of weighted sum assumes the neighbor nodes are independent of each other, and ignores the possible interactions between them. When such interactions exist, such as the co-occurrence of two neighbor nodes is a strong signal of the target node's characteristics, existing GNN models may fail to capture the signal. In this work, we argue the importance of modeling the interactions between neighbor nodes in GNN. We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes. We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes. In particular, we specify two BGNN models named BGCN and BGAT, based on the well-known GCN and GAT, respectively. Empirical results on three public benchmarks of semi-supervised node classification verify the effectiveness of BGNN -- BGCN (BGAT) outperforms GCN (GAT) by 1.6% (1.5%) in classification accuracy.Codes are available at: https://github.com/zhuhm1996/bgnn.Comment: Accepted by IJCAI 2020. SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserve

    Empirical stationary correlations for semi-supervised learning on graphs

    Full text link
    In semi-supervised learning on graphs, response variables observed at one node are used to estimate missing values at other nodes. The methods exploit correlations between nearby nodes in the graph. In this paper we prove that many such proposals are equivalent to kriging predictors based on a fixed covariance matrix driven by the link structure of the graph. We then propose a data-driven estimator of the correlation structure that exploits patterns among the observed response values. By incorporating even a small fraction of observed covariation into the predictions, we are able to obtain much improved prediction on two graph data sets.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS293 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore