5,248 research outputs found
I-BEAT: New ultrasonic method for single bunch measurement of ion energy distribution
The shape of a wave carries all information about the spatial and temporal
structure of its source, given that the medium and its properties are known.
Most modern imaging methods seek to utilize this nature of waves originating
from Huygens' principle. We discuss the retrieval of the complete kinetic
energy distribution from the acoustic trace that is recorded when a short ion
bunch deposits its energy in water. This novel method, which we refer to as
Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a generalization of the
ionoacoustic approach. Featuring compactness, simple operation,
indestructibility and high dynamic ranges in energy and intensity, I-BEAT is a
promising approach to meet the needs of petawatt-class laser-based ion
accelerators. With its capability of completely monitoring a single, focused
proton bunch with prompt readout it, is expected to have particular impact for
experiments and applications using ultrashort ion bunches in high flux regimes.
We demonstrate its functionality using it with two laser-driven ion sources for
quantitative determination of the kinetic energy distribution of single,
focused proton bunches.Comment: Paper: 17 Pages, 3 figures Supplementary Material 16 pages, 7 figure
Solar energy conversion through the interaction of plasmons with tunnel junctions. Part A: Solar cell analysis. Part B: Photoconductor analysis
A solar cell utilizing guided optical waves and tunnel junctions was analyzed to determine its feasibility. From this analysis, it appears that the limits imposed upon conventional multiple cell systems also limit this solar cell. Due to this limitation, it appears that the relative simplicity of the conventional multiple cell systems over the solar cell make the conventional multiple cell systems the more promising candidate for improvement. It was discovered that some superlattice structures studied could be incorporated into an infrared photodetector. This photoconductor appears to be promising as a high speed, sensitive (high D sup star sub BLIP) detector in the wavelength range from 15 to over 100 micrometers
Optical devices - Lasers. A compilation
Laser applications in communications, industrial fabrication, and computer systems, and laser beam generation and control - technology utilizatio
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
  High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
Constance mirror program: Progress and plans
The current state of the mechanics of the Constance II experiment, the physics results gathered, the motivation background, and future plans for the Constance II experiment are reviewed. Several improvements have been made and several experimental investigations have been completed. These include the construction/installation/testing of: (1) liquid-nitrogen cooled, Ioffe bars installed, (2) a diverter coil (3) the 100 kW ICRF generator, (4) the data acquisition system, and (5) the optimum hot-iron operation of the machine with Titanium and pulsed-gas plasma guns. Measurements were made of the density, temperature, and radius of the plasma. Ion-cyclotron fluctuations were observed, their bandwidth measured, and data collected demonstrating resonance heating. New X-ray diagnostics were designed and purchased, and progress on the Thomson scattering was made. Finally, a new hot cathode gun was designed and constructed
- …
