870 research outputs found

    Influence Maximization Meets Efficiency and Effectiveness: A Hop-Based Approach

    Full text link
    Influence Maximization is an extensively-studied problem that targets at selecting a set of initial seed nodes in the Online Social Networks (OSNs) to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale OSNs. Prior Monte-Carlo-simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can easily scale to millions of nodes and billions of edges. Unlike previous heuristics, our proposed hop-based approaches can provide certain theoretical guarantees. Experimental evaluations with real OSN datasets demonstrate the efficiency and effectiveness of our algorithms.Comment: Extended version of the conference paper at ASONAM 2017, 11 page

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1

    Fault Tolerance in Cellular Automata at High Fault Rates

    Full text link
    A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. We are concerned with the degree (the number of neighboring cells on which the state transition function depends) needed to achieve fault tolerance when the fault rate is high (nearly 1/2). We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We also consider both a purely probabilistic fault model (in which the states of cells are perturbed at exactly the fault rate) and an adversarial model (in which the occurrence of a fault gives control of the state to an omniscient adversary). We show that there are cellular automata that can tolerate a fault rate 1/2ξ1/2 - \xi (with ξ>0\xi>0) with degree O((1/ξ2)log(1/ξ))O((1/\xi^2)\log(1/\xi)), even with adversarial combined faults. The simplest such automata are based on infinite regular trees, but our results also apply to other structures (such as hyperbolic tessellations) that contain infinite regular trees. We also obtain a lower bound of Ω(1/ξ2)\Omega(1/\xi^2), even with purely probabilistic transient faults only
    corecore