670,404 research outputs found

    Proofs Without Syntax

    Full text link
    "[M]athematicians care no more for logic than logicians for mathematics." Augustus de Morgan, 1868. Proofs are traditionally syntactic, inductively generated objects. This paper presents an abstract mathematical formulation of propositional calculus (propositional logic) in which proofs are combinatorial (graph-theoretic), rather than syntactic. It defines a *combinatorial proof* of a proposition P as a graph homomorphism h : C -> G(P), where G(P) is a graph associated with P and C is a coloured graph. The main theorem is soundness and completeness: P is true iff there exists a combinatorial proof h : C -> G(P).Comment: Appears in Annals of Mathematics, 2006. 5 pages + references. Version 1 is submitted version; v3 is final published version (in two-column format rather than Annals style). Changes for v2: dualised definition of combinatorial truth, thereby shortening some subsequent proofs; added references; corrected typos; minor reworking of some sentences/paragraphs; added comments on polynomial-time correctness (referee request). Changes for v3: corrected two typos, reworded one sentence, repeated a citation in Notes sectio

    Compressibility and probabilistic proofs

    Full text link
    We consider several examples of probabilistic existence proofs using compressibility arguments, including some results that involve Lov\'asz local lemma.Comment: Invited talk for CiE 2017 (full version

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    Making simple proofs simpler

    Full text link
    An open partition \pi{} [Cod09a, Cod09b] of a tree T is a partition of the vertices of T with the property that, for each block B of \pi, the upset of B is a union of blocks of \pi. This paper deals with the number, NP(n), of open partitions of the tree, V_n, made of two chains with n points each, that share the root

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result
    corecore