1,287 research outputs found

    Overgeneration in the Higher Infinite

    Get PDF
    The Overgeneration Argument is a prominent objection against the model-theoretic account of logical consequence for second-order languages. In previous work we have offered a reconstruction of this argument which locates its source in the conflict between the neutrality of second-order logic and its alleged entanglement with mathematics. Some cases of this conflict concern small large cardinals. In this article, we show that in these cases the conflict can be resolved by moving from a set-theoretic implementation of the model-theoretic account to one which uses higher-order resources

    Logic in the Tractatus

    Get PDF
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably infinite, then the property of being a tautology is \Pi^1_1-complete. But third, it is only granted the assumption of countability that the class of tautologies is \Sigma_1-definable in set theory. Wittgenstein famously urges that logical relationships must show themselves in the structure of signs. He also urges that the size of the universe cannot be prejudged. The results of this paper indicate that there is no single way in which logical relationships could be held to make themselves manifest in signs, which does not prejudge the number of objects

    Metalogic and the Overgeneration Argument

    Get PDF
    A prominent objection against the logicality of second-order logic is the so-called Overgeneration Argument. However, it is far from clear how this argument is to be understood. In the first part of the article, we examine the argument and locate its main source, namely, the alleged entanglement of second-order logic and mathematics. We then identify various reasons why the entanglement may be thought to be problematic. In the second part of the article, we take a metatheoretic perspective on the matter. We prove a number of results establishing that the entanglement is sensitive to the kind of semantics used for second-order logic. These results provide evidence that by moving from the standard set-theoretic semantics for second-order logic to a semantics which makes use of higher-order resources, the entanglement either disappears or may no longer be in conflict with the logicality of second-order logic

    Quantifying information transfer and mediation along causal pathways in complex systems

    Get PDF
    Measures of information transfer have become a popular approach to analyze interactions in complex systems such as the Earth or the human brain from measured time series. Recent work has focused on causal definitions of information transfer excluding effects of common drivers and indirect influences. While the former clearly constitutes a spurious causality, the aim of the present article is to develop measures quantifying different notions of the strength of information transfer along indirect causal paths, based on first reconstructing the multivariate causal network (\emph{Tigramite} approach). Another class of novel measures quantifies to what extent different intermediate processes on causal paths contribute to an interaction mechanism to determine pathways of causal information transfer. A rigorous mathematical framework allows for a clear information-theoretic interpretation that can also be related to the underlying dynamics as proven for certain classes of processes. Generally, however, estimates of information transfer remain hard to interpret for nonlinearly intertwined complex systems. But, if experiments or mathematical models are not available, measuring pathways of information transfer within the causal dependency structure allows at least for an abstraction of the dynamics. The measures are illustrated on a climatological example to disentangle pathways of atmospheric flow over Europe.Comment: 20 pages, 6 figure

    Type-driven natural language analysis

    Get PDF
    The purpose of this thesis is in showing how recent developments in logic programming can be exploited to encode in a computational environment the features of certain linguistic theories. We are in this way able to make available for the purpose of natural language processing sophisticated capabilities of linguistic analysis directly justified by well developed grammatical frameworks. More specifically, we exploit hypothetical reasoning, recently proposed as one of the possible directions to widen logic programming, to account for the syntax of filler-gap dependencies along the lines of linguistic theories such as Generalized Phrase Structure Grammar and Categorial Grammar. Moreover, we make use, for the purpose of semantic analysis of the same kind of phenomena, of another recently proposed extension, interestingly related to the previous one, namely the idea of replacing first-order terms with the more expressive λ-terms of λ-Calculus

    On the Complexity of Reconstructing Chemical Reaction Networks

    Full text link
    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from the full hypergraph description, e.g.\ on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP-completeness of the problem in its Boolean formulation. Furthermore we study the problem empirically on random and real world instances in order to investigate its computational limits in practice

    Quantifying information transfer and mediation along causal pathways in complex systems

    Get PDF
    Measures of information transfer have become a popular approach to analyze interactions in complex systems such as the Earth or the human brain from measured time series. Recent work has focused on causal definitions of information transfer aimed at decompositions of predictive information about a target variable, while excluding effects of common drivers and indirect influences. While common drivers clearly constitute a spurious causality, the aim of the present article is to develop measures quantifying different notions of the strength of information transfer along indirect causal paths, based on first reconstructing the multivariate causal network. Another class of novel measures quantifies to what extent different intermediate processes on causal paths contribute to an interaction mechanism to determine pathways of causal information transfer. The proposed framework complements predictive decomposition schemes by focusing more on the interaction mechanism between multiple processes. A rigorous mathematical framework allows for a clear information-theoretic interpretation that can also be related to the underlying dynamics as proven for certain classes of processes. Generally, however, estimates of information transfer remain hard to interpret for nonlinearly intertwined complex systems. But if experiments or mathematical models are not available, then measuring pathways of information transfer within the causal dependency structure allows at least for an abstraction of the dynamics. The measures are illustrated on a climatological example to disentangle pathways of atmospheric flow over Europe

    Overgeneration in the higher infinite

    Get PDF

    Overgeneration in the Higher Infinite

    Get PDF
    corecore