12,668 research outputs found

    What is a logic, and what is a proof ?

    Get PDF
    International audienceI will discuss the two problems of how to define identity between logics and how to define identity between proofs. For the identity of logics, I propose to simply use the notion of preorder equivalence. This might be considered to be folklore, but is exactly what is needed from the viewpoint of the problem of the identity of proofs: If the proofs are considered to be part of the logic, then preorder equivalence becomes equivalence of categories, whose arrows are the proofs. For identifying these, the concept of proof nets is discussed

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation

    An Abstract Approach to Stratification in Linear Logic

    Full text link
    We study the notion of stratification, as used in subsystems of linear logic with low complexity bounds on the cut-elimination procedure (the so-called light logics), from an abstract point of view, introducing a logical system in which stratification is handled by a separate modality. This modality, which is a generalization of the paragraph modality of Girard's light linear logic, arises from a general categorical construction applicable to all models of linear logic. We thus learn that stratification may be formulated independently of exponential modalities; when it is forced to be connected to exponential modalities, it yields interesting complexity properties. In particular, from our analysis stem three alternative reformulations of Baillot and Mazza's linear logic by levels: one geometric, one interactive, and one semantic

    From Proof Nets to the Free *-Autonomous Category

    Get PDF
    In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting. We show the standard results of sequentialization and strong normalization of cut elimination. In the second part of the paper we show that the identifications enforced on proofs are such that the class of two-conclusion proof nets defines the free *-autonomous category.Comment: LaTeX, 44 pages, final version for LMCS; v2: updated bibliograph

    Proof equivalence in MLL is PSPACE-complete

    Full text link
    MLL proof equivalence is the problem of deciding whether two proofs in multiplicative linear logic are related by a series of inference permutations. It is also known as the word problem for star-autonomous categories. Previous work has shown the problem to be equivalent to a rewiring problem on proof nets, which are not canonical for full MLL due to the presence of the two units. Drawing from recent work on reconfiguration problems, in this paper it is shown that MLL proof equivalence is PSPACE-complete, using a reduction from Nondeterministic Constraint Logic. An important consequence of the result is that the existence of a satisfactory notion of proof nets for MLL with units is ruled out (under current complexity assumptions). The PSPACE-hardness result extends to equivalence of normal forms in MELL without units, where the weakening rule for the exponentials induces a similar rewiring problem.Comment: Journal version of: Willem Heijltjes and Robin Houston. No proof nets for MLL with units: Proof equivalence in MLL is PSPACE-complete. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science, 201

    Bipolar Proof Nets for MALL

    Full text link
    In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspon- dence between this paradigm and those more pragmatic ones inspired to transactional or distributed systems. In particular we show that the construction of additive proof nets can be interpreted as a model for super-ACID (or co-operative) transactions over distributed transactional systems (typi- cally, multi-databases).Comment: Proceedings of the "Proof, Computation, Complexity" International Workshop, 17-18 August 2012, University of Copenhagen, Denmar
    • …
    corecore