792,970 research outputs found
Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter.
Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors
Recommended from our members
The RNA Polymerase II Core Promoter in Drosophila.
Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression
Distinct promoter elements mediate the co-operative effect of Brn-3a and p53 on the p21 promoter and their antagonism on the Bax promoter
Although the promoters of both the Bax and p21 genes are activated by p53, they differ in the effect on this activation of the POU family transcription factor Brn-3a. Thus, Brn-3a inhibits activation of the Bax promoter by p53 but enhances the ability of p53 to activate the p21 promoter. We demonstrate that repression of p53-mediated activation of the Bax promoter involves a complex upstream sequence in which two Brn-3a response elements flank the p53 response element. In contrast, a minimal p21 promoter is activated by Brn-3a and such activation cannot be abolished without abolishing basal promoter activity. Moreover, synergistic activation by Brn-3a and p53 continues to be observed when the p53-binding sites in the p21 promoter are substituted by the Bax p53 site or by the region of the Bax promoter essential for Brn-3a-mediated repression, indicating that the p21 core promoter plays a central role in this response. The significance of these effects is discussed in terms of the different responses of the Bax and p21 promoters and the overlapping but distinct roles of Brn-3a and p53 in neuronal growth arrest and apoptosis
Targets for the MalI repressor at the divergent Escherichia coliK-12malX-malI promoters
Random mutagenesis has been used to identify the target DNA sites for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters. The malX promoter is repressed by MalI binding to a DNA site located from position -24 to position -9, upstream of the malX promoter transcript start. The malI promoter is repressed by MalI binding from position +3 to position +18, downstream of the malI transcript start. MalI binding at the malI promoter target is not required for repression of the malX promoter. Similarly, MalI binding at the malX promoter target is not required for repression of the malI. Although the malX and malI promoters are regulated by a single DNA site for cyclic AMP receptor protein, they function independently and each is repressed by MalI binding to a different independent operator site
CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter A) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support canonical NF-κB signaling in response to treatment with tumor necrosis factor (TNF). Nevertheless, non-canonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic NEMO in the edited cells restores downstream NF-κB signaling in response to TNF. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter A) in the human SNU-423 liver cancer cell line. We have also used homology directed repair (HDR) to fix the promoter B element in a 293T cell clone. Overall, we have created a strategy for selectively eliminating cell type-specific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.GM117350 - National Institutes of Health; CA077474 - National Institutes of HealthPublished versio
Genetic analysis of the human tumor necrosis factor alpha/cachectin promoter region in a macrophage cell line.
The 615-bp 5' flanking region of the human TNF-alpha/cachectin gene was isolated and ligated to the luciferase reporter gene. In addition, a series of truncated promoter constructs was generated by exonuclease III digestion. The promoter activity of these constructs was studied in a transient transfection system using the TNF-alpha-producing U937 cell line. Full-length and truncated TNF promoter constructions extending from -615 to -95 bp relative to the transcription start site (TSS) could be induced by phorbol esters. A construct truncated to within 36 bp of the TSS (and within 11 bp of the TATAA box) was inactive. Therefore, the phorbol ester responsive is localized in the TNF/cachectin promoter to a relatively short region proximal to the TATAA box
An open reading frame upstream from the nifH gene of Klebsiella pneumoniae
An open reading frame upstream from nifHDK operon of Klebsiella pneumoniae had been described. The orientation of this open reading frame is opposite to that of nifHDK and sequence homology was found between the open reading frame promoter and the promoter of nifHDK operon. A recombinant plasmid carrying the promoter region of the open reading frame fused to the beta-galactosidase gene was constructed. Strains of E.coli were transformed with the plasmid containing this open reading frame promoter-lacZ fusion or co-transformed with it and a plasmid carrying the nifA gene. An appreciable activity of beta-galactosidase was found in strains which received both plasmids, indicating that the promoter of the open reading frame can be activated by the product of nifA gene. Thus, the open reading frame found between nifHDK operon and nifJ behaves just like other nif genes of K.pneumoniae in requiring the product of nifA as the positive effector for expression
- …
