2,428 research outputs found

    Evolution of the magnetic field in magnetars

    Full text link
    We use numerical MHD to look at the stability of a possible poloidal field in neutron stars (Flowers & Ruderman 1977), and follow its unstable evolution, which leads to the complete decay of the field. We then model a neutron star after the formation of a solid crust of high conductivity. As the initial magnetic field we use the stable `twisted torus' field which was the result of our earlier work (Braithwaite & Nordlund 2005), since this field is likely to exist in the interior of the star at the time of crust formation. We follow the evolution of the field under the influence of diffusion, and find that large stresses build up in the crust, which will presumably lead to cracking. We put this forward as a model for outbursts in soft gamma repeaters.Comment: 11 pages, 12 figures, submitted to A&

    Influence of magnetic cycles on stellar prominences and their mass loss rates

    Get PDF
    Funding: The authors acknowledge support from STFC consolidated grant number ST/R000824/1.Observations of rapidly-rotating cool stars often show coronal “slingshot” prominences that remove mass and angular momentum when they are ejected. The derived masses of these prominences show a scatter of some two orders of magnitude. In order to investigate if this scatter could be intrinsic, we use a full magnetic cycle of solar magnetograms to model the coronal structure and prominence distribution in a young Sun, where we scale the field strength in the magnetograms with angular velocity according to B∝Ω−1.32. We reproduce both the observed prominence masses and their scatter. We show that both the field strength and the field geometry contribute to the prominence masses that can be supported and to the rate at which they are ejected. Predicted prominence masses follow the magnetic cycle, but with half the period, peaking both at cycle maximum and at cycle minimum. We show that mass loss rates in prominences are less than those predicted for the stellar wind. We also investigate the role of small-scale field that may be unresolved in typical stellar magnetograms. This provides only a small reduction in the predicted total prominence mass, principally by reducing the number of large magnetic loops that can support slingshot prominences. We conclude that the observed scatter in prominence masses can be explained by underlying magnetic cycles.PostprintPeer reviewe

    Stellar coronal magnetic fields and star-planet interaction

    Full text link
    Evidence of magnetic interaction between late-type stars and close-in giant planets is provided by the observations of stellar hot spots rotating synchronously with the planets and showing an enhancement of chromospheric and X-ray fluxes. We investigate star-planet interaction in the framework of a magnetic field model of a stellar corona, considering the interaction between the coronal field and that of a planetary magnetosphere moving through the corona. The energy budget of the star-planet interaction is discussed assuming that the planet may trigger a release of the energy of the coronal field by decreasing its relative helicity. The observed intermittent character of the star-planet interaction is explained by a topological change of the stellar coronal field, induced by a variation of its relative helicity. The model predicts the formation of many prominence-like structures in the case of highly active stars owing to the accumulation of matter evaporated from the planet inside an azimuthal flux rope in the outer corona. Moreover, the model can explain why stars accompanied by close-in planets have a higher X-ray luminosity than those with distant planets. It predicts that the best conditions to detect radio emission from the exoplanets and their host stars are achieved when the field topology is characterized by field lines connected to the surface of the star, leading to a chromospheric hot spot rotating synchronously with the planet. The main predictions of the model can be verified with present observational techniques, by a simultaneous monitoring of the chromospheric flux and X-ray (or radio) emission, and spectropolarimetric observations of the photospheric magnetic fields.Comment: 13 pages, 7 figures, accepted by Astronomy and Astrophysic

    Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th, 2015); accepted versio

    On the correlation between stellar chromospheric flux and the surface gravity of close-in planets

    Full text link
    The chromospheric emission of stars with close-in transiting planets has been found to correlate with the surface gravity of their planets. Stars with low-gravity planets have on average a lower chromospheric flux. We propose that this correlation is due to the absorption by circumstellar matter that comes from the evaporation of the planets. Planets with a lower gravity have a greater mass-loss rate which leads to a higher column density of circumstellar absorption and this in turn explains the lower level of chromospheric emission observed in their host stars. We estimated the required column density and found that planetary evaporation can account for it. We derived a theoretical relationship between the chromospheric emission as measured in the core of the Ca II H&K lines and the planet gravity. We applied this relationship to a sample of transiting systems for which both the stellar Ca II H&K emission and the planetary surface gravity are known and found a good agreement, given the various sources of uncertainties and the intrinsic variability of the stellar emissions and planetary evaporation rates. We consider implications for the radial velocity jitter applied to fit the spectroscopic orbits and for the age estimates of planetary systems based on the chromospheric activity level of their host stars.Comment: 5 pages, 2 figures, accepted as a Letter to the Editor of Astronomy and Astrophysic

    Polar Fields for AB Dor

    Full text link
    Polar spots are often observed on rapidly-rotating cool stars, but the nature of the magnetic field in these spots is as yet unknown. While Zeeman-Doppler imaging can provide surface magnetic field maps over much of the observed stellar surface, the Zeeman signature is suppressed in the dark polar regions. We have determined the effect on the global coronal structure of three current models for this polar field: that it is composed (a) of unipolar field, (b) of bipolar regions or (c) of nested rings of opposite polarity. We take as an example the young, rapid rotator AB Dor (rotation period = 0.514 days). By adding these model polar fields into the surface field maps determined from Zeeman-Doppler imaging, we have compared the resulting coronal structure with the observable properties of the corona - the magnitude and rotational modulation of the X-ray emission measure and the presence of slingshot prominences trapped in the corona around the Keplerian co-rotation radius. We find that only the presence of a unipolar spot has any significant effect on the overall coronal structure, forcing much of the polar field to be open.Comment: 10 pages, 21 figure

    Phase Space Structure in the Solar Neighbourhood

    Get PDF
    We examine the idea that dynamical parameters can be estimated by identifying locations in the solar neighbourhood where simulated velocity distributions match the observed local distribution. Here, the dynamical influence of both the Galactic bar and the outer spiral pattern are taken into account. The Milky Way disc is stirred by analytical potentials that are chosen to represent the two perturbations, the ratio of pattern speeds of which is explored, rather than held constant. The velocity structure of the final configuration is presented as heliocentric velocity distributions at different locations. These model velocity distributions are compared to the observed distribution in terms of a goodness-of-fit parameter that has been formulated here. We monitor the spatial distribution of the maximal value of this parameter, in order to constrain the solar position from a model. Efficiency of a model is based on a study of this distribution as well as on other independent dynamical considerations. We reject the bar only and spiral only models and arrive at the following bar parameters from the bar+spiral simulations: bar pattern speed of 57.4^{+2.8}_{-3.3} km/s/kpc and a bar angle in [0^\circ,30∘, 30^\circ]. However, extracting information in this way is no longer viable when the dynamical influence of the spiral pattern does not succumb to that of the bar. Orbital analysis indicates that even though the basic bimodality in the local velocity distribution can be attributed to scattering off the Outer Lindblad Resonance of the bar, it is the interaction of irregular orbits and orbits of other resonant families, that is responsible for the other moving groups; it is realised that such interaction increases with the warmth of the background disk.Comment: 23 pages, 17 figures, accepted for publication in A&

    Miniconference on astrophysical jets

    Get PDF
    This miniconference brought together observers of astrophysical jets, analytic and numerical modelers of both astrophysical jets and spheromaks, and laboratory experimentalists. The purpose of the miniconference was to encourage interaction between these diverse groups and also expose the plasma physics community to the interesting plasma issues associated with astrophysical jets. The miniconference emphasized magnetically driven astrophysical jets and consisted of three half-day sessions. The order of presentation was approximately: observations and general properties, experiments, numerical models, and special topics
    • 

    corecore