542 research outputs found

    New SVD based initialization strategy for Non-negative Matrix Factorization

    Full text link
    There are two problems need to be dealt with for Non-negative Matrix Factorization (NMF): choose a suitable rank of the factorization and provide a good initialization method for NMF algorithms. This paper aims to solve these two problems using Singular Value Decomposition (SVD). At first we extract the number of main components as the rank, actually this method is inspired from [1, 2]. Second, we use the singular value and its vectors to initialize NMF algorithm. In 2008, Boutsidis and Gollopoulos [3] provided the method titled NNDSVD to enhance initialization of NMF algorithms. They extracted the positive section and respective singular triplet information of the unit matrices {C(j)}k j=1 which were obtained from singular vector pairs. This strategy aims to use positive section to cope with negative elements of the singular vectors, but in experiments we found that even replacing negative elements by their absolute values could get better results than NNDSVD. Hence, we give another method based SVD to fulfil initialization for NMF algorithms (SVD-NMF). Numerical experiments on two face databases ORL and YALE [16, 17] show that our method is better than NNDSVD

    Discriminant Projective Non-Negative Matrix Factorization

    Get PDF
    Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W-T X as their coefficients, i.e., X approximate to WWT X. Since PNM

    Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems

    Get PDF
    Data-driven and computational approaches are showing significant promise in solving several challenging problems in various fields such as bioinformatics, finance and many branches of engineering. In this dissertation, we explore the potential of these approaches, specifically statistical data models and optimization algorithms, for solving several challenging problems in computer vision. In doing so, we contribute to the literatures of both statistical data models and computer vision. In the context of statistical data models, we propose principled approaches for solving robust regression problems, both linear and kernel, and missing data matrix factorization problem. In computer vision, we propose statistically optimal and efficient algorithms for solving the remote face recognition and structure from motion (SfM) problems. The goal of robust regression is to estimate the functional relation between two variables from a given data set which might be contaminated with outliers. Under the reasonable assumption that there are fewer outliers than inliers in a data set, we formulate the robust linear regression problem as a sparse learning problem, which can be solved using efficient polynomial-time algorithms. We also provide sufficient conditions under which the proposed algorithms correctly solve the robust regression problem. We then extend our robust formulation to the case of kernel regression, specifically to propose a robust version for relevance vector machine (RVM) regression. Matrix factorization is used for finding a low-dimensional representation for data embedded in a high-dimensional space. Singular value decomposition is the standard algorithm for solving this problem. However, when the matrix has many missing elements this is a hard problem to solve. We formulate the missing data matrix factorization problem as a low-rank semidefinite programming problem (essentially a rank constrained SDP), which allows us to find accurate and efficient solutions for large-scale factorization problems. Face recognition from remotely acquired images is a challenging problem because of variations due to blur and illumination. Using the convolution model for blur, we show that the set of all images obtained by blurring a given image forms a convex set. We then use convex optimization techniques to find the distances between a given blurred (probe) image and the gallery images to find the best match. Further, using a low-dimensional linear subspace model for illumination variations, we extend our theory in a similar fashion to recognize blurred and poorly illuminated faces. Bundle adjustment is the final optimization step of the SfM problem where the goal is to obtain the 3-D structure of the observed scene and the camera parameters from multiple images of the scene. The traditional bundle adjustment algorithm, based on minimizing the l_2 norm of the image re-projection error, has cubic complexity in the number of unknowns. We propose an algorithm, based on minimizing the l_infinity norm of the re-projection error, that has quadratic complexity in the number of unknowns. This is achieved by reducing the large-scale optimization problem into many small scale sub-problems each of which can be solved using second-order cone programming
    • …
    corecore