11,754 research outputs found

    Covering and gluing of algebras and differential algebras

    Full text link
    Extending work of Budzynski and Kondracki, we investigate coverings and gluings of algebras and differential algebras. We describe in detail the gluing of two quantum discs along their classical subspace, giving a C*-algebra isomorphic to a certain Podles sphere, as well as the gluing of U_{\sqrt{q}}(sl_2)-covariant differential calculi on the discs.Comment: latex2e, 27 page

    Noncommutative generalization of SU(n)-principal fiber bundles: a review

    Full text link
    This is an extended version of a communication made at the international conference ``Noncommutative Geometry and Physics'' held at Orsay in april 2007. In this proceeding, we make a review of some noncommutative constructions connected to the ordinary fiber bundle theory. The noncommutative algebra is the endomorphism algebra of a SU(n)-vector bundle, and its differential calculus is based on its Lie algebra of derivations. It is shown that this noncommutative geometry contains some of the most important constructions introduced and used in the theory of connections on vector bundles, in particular, what is needed to introduce gauge models in physics, and it also contains naturally the essential aspects of the Higgs fields and its associated mechanics of mass generation. It permits one also to extend some previous constructions, as for instance symmetric reduction of (here noncommutative) connections. From a mathematical point of view, these geometrico-algebraic considerations highlight some new point on view, in particular we introduce a new construction of the Chern characteristic classes

    Van der Waerden calculus with commuting spinor variables and the Hilbert-Krein structure of the superspace

    Full text link
    Working with anticommuting Weyl(or Mayorana) spinors in the framework of the van der Waerden calculus is standard in supersymmetry. The natural frame for rigorous supersymmetric quantum field theory makes use of operator-valued superdistributions defined on supersymmetric test functions. In turn this makes necessary a van der Waerden calculus in which the Grassmann variables anticommute but the fermionic components are commutative instead of being anticommutative. We work out such a calculus in view of applications to the rigorous conceptual problems of the N=1 supersymmetric quantum field theory.Comment: 14 page
    • …
    corecore