2 research outputs found

    Projected Wirtinger Gradient Descent for Low-Rank Hankel Matrix Completion in Spectral Compressed Sensing

    Full text link
    This paper considers reconstructing a spectrally sparse signal from a small number of randomly observed time-domain samples. The signal of interest is a linear combination of complex sinusoids at RR distinct frequencies. The frequencies can assume any continuous values in the normalized frequency domain [0,1)[0,1). After converting the spectrally sparse signal recovery into a low rank structured matrix completion problem, we propose an efficient feasible point approach, named projected Wirtinger gradient descent (PWGD) algorithm, to efficiently solve this structured matrix completion problem. We further accelerate our proposed algorithm by a scheme inspired by FISTA. We give the convergence analysis of our proposed algorithms. Extensive numerical experiments are provided to illustrate the efficiency of our proposed algorithm. Different from earlier approaches, our algorithm can solve problems of very large dimensions very efficiently.Comment: 12 page

    Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees

    Full text link
    Optimization problems with rank constraints arise in many applications, including matrix regression, structured PCA, matrix completion and matrix decomposition problems. An attractive heuristic for solving such problems is to factorize the low-rank matrix, and to run projected gradient descent on the nonconvex factorized optimization problem. The goal of this problem is to provide a general theoretical framework for understanding when such methods work well, and to characterize the nature of the resulting fixed point. We provide a simple set of conditions under which projected gradient descent, when given a suitable initialization, converges geometrically to a statistically useful solution. Our results are applicable even when the initial solution is outside any region of local convexity, and even when the problem is globally concave. Working in a non-asymptotic framework, we show that our conditions are satisfied for a wide range of concrete models, including matrix regression, structured PCA, matrix completion with real and quantized observations, matrix decomposition, and graph clustering problems. Simulation results show excellent agreement with the theoretical predictions
    corecore