32,837 research outputs found
Energy efficient engine diffuser/combustor model technology
A full scale, full annular diffuser/combustor model test rig was tested to investigate how configurational changes affect pressure loss and flow separation characteristics. The rig was characterized by five major modules: inlet; prediffuser; strut; simulated combustor; and full combustor. The prediffuser featured a short, curved wall dump design. Performance goals included: (1) a separation-free prediffuser flow field; (2) total pressure loss limited to 3.0 percent in the prediffuser and shrouds; and (3) an overall section pressure loss of 5.5 percent P sub T3 at the design airflow distribution. The results indicated that the prediffuser configurations operate well within the program goals for pressure loss and demonstrate separation free operation over a wide range of inlet conditions
Recommended from our members
High-Performance Integrated Window and Façade Solutions for California
The researchers developed a new generation of high-performance façade systems and supporting design and management tools to support industry in meeting California’s greenhouse gas reduction targets, reduce energy consumption, and enable an adaptable response to minimize real-time demands on the electricity grid. The project resulted in five outcomes: (1) The research team developed an R-5, 1-inch thick, triplepane, insulating glass unit with a novel low-conductance aluminum frame. This technology can help significantly reduce residential cooling and heating loads, particularly during the evening. (2) The team developed a prototype of a windowintegrated local ventilation and energy recovery device that provides clean, dry fresh air through the façade with minimal energy requirements. (3) A daylight-redirecting louver system was prototyped to redirect sunlight 15–40 feet from the window. Simulations estimated that lighting energy use could be reduced by 35–54 percent without glare. (4) A control system incorporating physics-based equations and a mathematical solver was prototyped and field tested to demonstrate feasibility. Simulations estimated that total electricity costs could be reduced by 9-28 percent on sunny summer days through adaptive control of operable shading and daylighting components and the thermostat compared to state-of-the-art automatic façade controls in commercial building perimeter zones. (5) Supporting models and tools needed by industry for technology R&D and market transformation activities were validated. Attaining California’s clean energy goals require making a fundamental shift from today’s ad-hoc assemblages of static components to turnkey, intelligent, responsive, integrated building façade systems. These systems offered significant reductions in energy use, peak demand, and operating cost in California
A New Materials and Design Approach for Roads, Bridges, Pavement, and Concrete
Increased understanding of demand for transport energy and how to improve road pavement materials would enable decision makers to make environmental, financial, and other positive changes in future planning and design of roads, bridges, and other important transportation structures. This research comprises three studies focused on pavement materials and a fourth study that examines energy demand within the road transportation sector. These studies are as follows:
1. A techno-economic study of ground tire rubber as an asphalt modifier;
2. A computational fluid dynamics analysis comparing the urban heat island effect of two different pavement materials – asphalt and Portland Cement Concrete;
3. A new approach that modifies the surface of ground tire rubber using low-cost chemicals and treatment methods to be used in asphalt applications; and
4. Analysis of road transport energy demand in California and the United States.
The findings of these studies include that 1. GTR is an effective and economically suitable additive for modified asphalt, 2. the suitability of PCC pavements in urban settings should be reexamined, 3. Surface modification of GTR materials can improve compatibilization of particles for the manufacture of asphalt materials, and 4. gasoline sales are generally price inelastic in both the U.S. and California. Ultimately, these four studies improve understanding of road pavement materials and transport energy demand. They lay out important information about the future of the relationship between materials and design in the transportation industry. These findings may be used by engineers, policymakers, and others in the industry to better consider implications of decisions involved in design, creation, and modification of structures using pavement and concrete, including roads, bridges, etc
From Ideas to Practice, Pilots to Strategy: Practical Solutions and Actionable Insights on How to Do Impact Investing
This report is the second publication in the World Economic Forum's Mainstreaming Impact Investing Initiative. The report takes a deeper look at why and how asset owners began to include impact investing in their portfolios and continue to do so today, and how they overcame operational and cultural constraints affecting capital flow. Given that impact investing expertise is spread among dozens if not hundreds of practitioners and academics, the report is a curation of some -- but certainly not all -- of those leading voices. The 15 articles are meant to provide investors, intermediaries and policy-makers with actionable insights on how to incorporate impact investing into their work.The report's goals are to show how mainstream investors and intermediaries have overcome the challenges in the impact investment sector, and to democratize the insights and expertise for anyone and everyone interested in the field. Divided into four main sections, the report contains lessons learned from practitioner's experience, and showcases best practices, organizational structures and innovative instruments that asset owners, asset managers, financial institutions and impact investors have successfully implemented
SOCIOCULTURAL AND ECONOMIC VALUES – ORGANIC FOOD CONSUMPTION IN FAIRS AND SUPERMARKETS IN CAMPINAS, SP. BRAZIL
This scientific research was meant to encompass the meaning of economic and sociocultural consumption and its relationship to human values such as: environmental
respect, commitment to health principles, solidarity among rural and urban social groups, and economic aspects (prices etc.)
Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics
We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH_3NO_2) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000−3000 K) and density 1.97 g/cm^3 for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH_3NOOH and CH_2NO_2. For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C−N bond the formation of a C−O bond to form methyl nitrate (CH_3ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H_2O which starts forming following those initiation steps. The appearance of H_2O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF
Treatment and valorization plants in materials recovery supply chain
Aim of industrial symbiosis is to create synergies between industries in order to exchange resources (by-products, water and energy) through geographic proximity and collaboration [1]. By optimizing resource flows in a “whole-system approach”, a minimization of dangerous emissions and of supply needs can be achieved. Resources exchanges are established to facilitate recycling and re-use of industrial waste using a commercial vehicle. Several paths can be identified in order to establish an industrial symbiosis network (Figure 1, left), in relation (i) to the life cycle phase (raw material, component, product) and (ii) to the nature (material, water, energy) of the resource flows to be exchanged. Sometimes by-products and/or waste of an industrial process have to be treated and valorized in order to become the raw materials for others. In particular, two main treatment processes can be identified: refurbishment/upgrade for re-use (Figure 1, center) and recycling for material recovery (Figure 1, right). A brief overview of technological and economic aspects is given, together with their relevance to industrial symbiosis
Energy efficient engine sector combustor rig test program
Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program
Recommended from our members
Energy Information Systems: From the Basement to the Boardroom
A significant buildings energy reduction opportunity exists in the office sector, given that this market segment typically is an early adopter of new technology. There is a rising trend towards smart and connected offices through the internet of things (IoT) that provides new opportunities for operational efficiency and environmental sustainability practices. Leading commercial real estate companies have begun to shift from individual building automation systems (BAS) to partially integrated and automated systems such as energy information systems (EIS). In both the United States and India, organizations are seeking operational excellence, enhanced tenant relationships, and topline growth. Hence it is imperative to engage the executives with decision-making power, by tapping into their interest in sustainability, corporate social responsibility, and innovation. This expansion of interest can enable data-driven decisions, strong energy investments, and deeper energy benefits, and would drive innovation in this field. However, none of this would be possible without robust, consistent building energy information to provide visibility across all the levels of decision making, i.e. from the basement where the facilities staff take operational action to the boardroom where the executives make investment decisions.
Price, security, and ease of use remain barriers to the adoption and pervasive use of promising EIS technologies in commercial office buildings. We believe that these barriers can be addressed through the development of ready, simplified, consistent, commercially available, low-cost EIS-in-a-box packages, that have a pre-defined set of hardware components and software features and functionality that are pertinent to a particular building sector. These simplified, sector-specific EIS packages can help to obviate the need for customization, and enhance ease of use, thereby enabling scale-up, in order to facilitate building energy savings. The EIS-in-a-box are adaptable in both U.S. and Indian office buildings, and potentially beyond these two countries
- …
