19 research outputs found

    Progressive Neural Networks for Transfer Learning in Emotion Recognition

    Full text link
    Many paralinguistic tasks are closely related and thus representations learned in one domain can be leveraged for another. In this paper, we investigate how knowledge can be transferred between three paralinguistic tasks: speaker, emotion, and gender recognition. Further, we extend this problem to cross-dataset tasks, asking how knowledge captured in one emotion dataset can be transferred to another. We focus on progressive neural networks and compare these networks to the conventional deep learning method of pre-training and fine-tuning. Progressive neural networks provide a way to transfer knowledge and avoid the forgetting effect present when pre-training neural networks on different tasks. Our experiments demonstrate that: (1) emotion recognition can benefit from using representations originally learned for different paralinguistic tasks and (2) transfer learning can effectively leverage additional datasets to improve the performance of emotion recognition systems.Comment: 5 pages, 4 figures, to appear in the proceedings of Interspeech 201

    Variational Autoencoders for Learning Latent Representations of Speech Emotion: A Preliminary Study

    Full text link
    Learning the latent representation of data in unsupervised fashion is a very interesting process that provides relevant features for enhancing the performance of a classifier. For speech emotion recognition tasks, generating effective features is crucial. Currently, handcrafted features are mostly used for speech emotion recognition, however, features learned automatically using deep learning have shown strong success in many problems, especially in image processing. In particular, deep generative models such as Variational Autoencoders (VAEs) have gained enormous success for generating features for natural images. Inspired by this, we propose VAEs for deriving the latent representation of speech signals and use this representation to classify emotions. To the best of our knowledge, we are the first to propose VAEs for speech emotion classification. Evaluations on the IEMOCAP dataset demonstrate that features learned by VAEs can produce state-of-the-art results for speech emotion classification.Comment: Proc. Interspeech 201

    The PRIORI Emotion Dataset: Linking Mood to Emotion Detected In-the-Wild

    Full text link
    Bipolar Disorder is a chronic psychiatric illness characterized by pathological mood swings associated with severe disruptions in emotion regulation. Clinical monitoring of mood is key to the care of these dynamic and incapacitating mood states. Frequent and detailed monitoring improves clinical sensitivity to detect mood state changes, but typically requires costly and limited resources. Speech characteristics change during both depressed and manic states, suggesting automatic methods applied to the speech signal can be effectively used to monitor mood state changes. However, speech is modulated by many factors, which renders mood state prediction challenging. We hypothesize that emotion can be used as an intermediary step to improve mood state prediction. This paper presents critical steps in developing this pipeline, including (1) a new in the wild emotion dataset, the PRIORI Emotion Dataset, collected from everyday smartphone conversational speech recordings, (2) activation/valence emotion recognition baselines on this dataset (PCC of 0.71 and 0.41, respectively), and (3) significant correlation between predicted emotion and mood state for individuals with bipolar disorder. This provides evidence and a working baseline for the use of emotion as a meta-feature for mood state monitoring.Comment: Interspeech 201

    On the Robustness of Speech Emotion Recognition for Human-Robot Interaction with Deep Neural Networks

    Full text link
    Speech emotion recognition (SER) is an important aspect of effective human-robot collaboration and received a lot of attention from the research community. For example, many neural network-based architectures were proposed recently and pushed the performance to a new level. However, the applicability of such neural SER models trained only on in-domain data to noisy conditions is currently under-researched. In this work, we evaluate the robustness of state-of-the-art neural acoustic emotion recognition models in human-robot interaction scenarios. We hypothesize that a robot's ego noise, room conditions, and various acoustic events that can occur in a home environment can significantly affect the performance of a model. We conduct several experiments on the iCub robot platform and propose several novel ways to reduce the gap between the model's performance during training and testing in real-world conditions. Furthermore, we observe large improvements in the model performance on the robot and demonstrate the necessity of introducing several data augmentation techniques like overlaying background noise and loudness variations to improve the robustness of the neural approaches.Comment: Submitted to IROS'18, Madrid, Spai

    Detecting Escalation Level from Speech with Transfer Learning and Acoustic-Lexical Information Fusion

    Full text link
    Textual escalation detection has been widely applied to e-commerce companies' customer service systems to pre-alert and prevent potential conflicts. Similarly, in public areas such as airports and train stations, where many impersonal conversations frequently take place, acoustic-based escalation detection systems are also useful to enhance passengers' safety and maintain public order. To this end, we introduce a system based on acoustic-lexical features to detect escalation from speech, Voice Activity Detection (VAD) and label smoothing are adopted to further enhance the performance in our experiments. Considering a small set of training and development data, we also employ transfer learning on several wellknown emotional detection datasets, i.e. RAVDESS, CREMA-D, to learn advanced emotional representations that is then applied to the conversational escalation detection task. On the development set, our proposed system achieves 81.5% unweighted average recall (UAR) which significantly outperforms the baseline with 72.2% UAR

    Transfer Learning for Improving Speech Emotion Classification Accuracy

    Full text link
    The majority of existing speech emotion recognition research focuses on automatic emotion detection using training and testing data from same corpus collected under the same conditions. The performance of such systems has been shown to drop significantly in cross-corpus and cross-language scenarios. To address the problem, this paper exploits a transfer learning technique to improve the performance of speech emotion recognition systems that is novel in cross-language and cross-corpus scenarios. Evaluations on five different corpora in three different languages show that Deep Belief Networks (DBNs) offer better accuracy than previous approaches on cross-corpus emotion recognition, relative to a Sparse Autoencoder and SVM baseline system. Results also suggest that using a large number of languages for training and using a small fraction of the target data in training can significantly boost accuracy compared with baseline also for the corpus with limited training examples.Comment: Proc. Interspeech 201

    Training Strategies to Handle Missing Modalities for Audio-Visual Expression Recognition

    Full text link
    Automatic audio-visual expression recognition can play an important role in communication services such as tele-health, VOIP calls and human-machine interaction. Accuracy of audio-visual expression recognition could benefit from the interplay between the two modalities. However, most audio-visual expression recognition systems, trained in ideal conditions, fail to generalize in real world scenarios where either the audio or visual modality could be missing due to a number of reasons such as limited bandwidth, interactors' orientation, caller initiated muting. This paper studies the performance of a state-of-the art transformer when one of the modalities is missing. We conduct ablation studies to evaluate the model in the absence of either modality. Further, we propose a strategy to randomly ablate visual inputs during training at the clip or frame level to mimic real world scenarios. Results conducted on in-the-wild data, indicate significant generalization in proposed models trained on missing cues, with gains up to 17% for frame level ablations, showing that these training strategies cope better with the loss of input modalities.Comment: ICMI 2020 workshop on "MODELING SOCIO-EMOTIONAL AND COGNITIVE PROCESSES FROM MULTIMODAL DATA IN THE WILD

    Convolutional Neural Network-based Speech Enhancement for Cochlear Implant Recipients

    Full text link
    Attempts to develop speech enhancement algorithms with improved speech intelligibility for cochlear implant (CI) users have met with limited success. To improve speech enhancement methods for CI users, we propose to perform speech enhancement in a cochlear filter-bank feature space, a feature-set specifically designed for CI users based on CI auditory stimuli. We leverage a convolutional neural network (CNN) to extract both stationary and non-stationary components of environmental acoustics and speech. We propose three CNN architectures: (1) vanilla CNN that directly generates the enhanced signal; (2) spectral-subtraction-style CNN (SS-CNN) that first predicts noise and then generates the enhanced signal by subtracting noise from the noisy signal; (3) Wiener-style CNN (Wiener-CNN) that generates an optimal mask for suppressing noise. An important problem of the proposed networks is that they introduce considerable delays, which limits their real-time application for CI users. To address this, this study also considers causal variations of these networks. Our experiments show that the proposed networks (both causal and non-causal forms) achieve significant improvement over existing baseline systems. We also found that causal Wiener-CNN outperforms other networks, and leads to the best overall envelope coefficient measure (ECM). The proposed algorithms represent a viable option for implementation on the CCi-MOBILE research platform as a pre-processor for CI users in naturalistic environments.Comment: Interspeech 201

    Incorporating End-to-End Speech Recognition Models for Sentiment Analysis

    Full text link
    Previous work on emotion recognition demonstrated a synergistic effect of combining several modalities such as auditory, visual, and transcribed text to estimate the affective state of a speaker. Among these, the linguistic modality is crucial for the evaluation of an expressed emotion. However, manually transcribed spoken text cannot be given as input to a system practically. We argue that using ground-truth transcriptions during training and evaluation phases leads to a significant discrepancy in performance compared to real-world conditions, as the spoken text has to be recognized on the fly and can contain speech recognition mistakes. In this paper, we propose a method of integrating an automatic speech recognition (ASR) output with a character-level recurrent neural network for sentiment recognition. In addition, we conduct several experiments investigating sentiment recognition for human-robot interaction in a noise-realistic scenario which is challenging for the ASR systems. We quantify the improvement compared to using only the acoustic modality in sentiment recognition. We demonstrate the effectiveness of this approach on the Multimodal Corpus of Sentiment Intensity (MOSI) by achieving 73,6% accuracy in a binary sentiment classification task, exceeding previously reported results that use only acoustic input. In addition, we set a new state-of-the-art performance on the MOSI dataset (80.4% accuracy, 2% absolute improvement).Comment: Accepted at the 2019 International Conference on Robotics and Automation (ICRA) will be held on May 20-24, 2019 in Montreal, Canad

    Speaker-invariant Affective Representation Learning via Adversarial Training

    Full text link
    Representation learning for speech emotion recognition is challenging due to labeled data sparsity issue and lack of gold standard references. In addition, there is much variability from input speech signals, human subjective perception of the signals and emotion label ambiguity. In this paper, we propose a machine learning framework to obtain speech emotion representations by limiting the effect of speaker variability in the speech signals. Specifically, we propose to disentangle the speaker characteristics from emotion through an adversarial training network in order to better represent emotion. Our method combines the gradient reversal technique with an entropy loss function to remove such speaker information. Our approach is evaluated on both IEMOCAP and CMU-MOSEI datasets. We show that our method improves speech emotion classification and increases generalization to unseen speakers.Comment: Accepted by ICASSP 2020; 5 page
    corecore