21 research outputs found

    MathNAS: If Blocks Have a Role in Mathematical Architecture Design

    Full text link
    Neural Architecture Search (NAS) has emerged as a favoured method for unearthing effective neural architectures. Recent development of large models has intensified the demand for faster search speeds and more accurate search results. However, designing large models by NAS is challenging due to the dramatical increase of search space and the associated huge performance evaluation cost. Consider a typical modular search space widely used in NAS, in which a neural architecture consists of mm block nodes and a block node has nn alternative blocks. Facing the space containing nmn^m candidate networks, existing NAS methods attempt to find the best one by searching and evaluating candidate networks directly.Different from the general strategy that takes architecture search as a whole problem, we propose a novel divide-and-conquer strategy by making use of the modular nature of the search space.Here, we introduce MathNAS, a general NAS framework based on mathematical programming.In MathNAS, the performances of the m∗nm*n possible building blocks in the search space are calculated first, and then the performance of a network is directly predicted based on the performances of its building blocks. Although estimating block performances involves network training, just as what happens for network performance evaluation in existing NAS methods, predicting network performance is completely training-free and thus extremely fast. In contrast to the nmn^m candidate networks to evaluate in existing NAS methods, which require training and a formidable computational burden, there are only m∗nm*n possible blocks to handle in MathNAS. Therefore, our approach effectively reduces the complexity of network performance evaluation.Our code is available at https://github.com/wangqinsi1/MathNAS.Comment: NeurIPS 202

    A Survey on Generative Diffusion Model

    Full text link
    Deep learning shows excellent potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly concerning certain implied parameters. Recently, the diffusion Model has become a rising class of generative models by its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its genuine drawback of a slow generation process, single data types, low likelihood, and the inability for dimension reduction. They are leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We first state the main problem with two landmark works -- DDPM and DSM, and a unified landmark work -- Score SDE. Then, we present improved techniques for existing problems in the diffusion-based model field, including speed-up improvement For model speed-up improvement, data structure diversification, likelihood optimization, and dimension reduction. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations \& further directions. The summation of existing well-classified methods is in our Github:https://github.com/chq1155/A-Survey-on-Generative-Diffusion-Model

    An Exploration of Controlling the Content Learned by Deep Neural Networks

    Get PDF
    With the great success of the Deep Neural Network (DNN), how to get a trustworthy model attracts more and more attention. Generally, people intend to provide the raw data to the DNN directly in training. However, the entire training process is in a black box, in which the knowledge learned by the DNN is out of control. There are many risks inside. The most common one is overfitting. With the deepening of research on neural networks, additional and probably greater risks were discovered recently. The related research shows that unknown clues can hide in the training data because of the randomization of the data and the finite scale of the training data. Some of the clues build meaningless but explicit links between input data the output data called ``shortcuts\u27\u27. The DNN makes the decision based on these ``shortcuts\u27\u27. This phenomenon is also called ``network cheating\u27\u27. The knowledge of such shortcuts learned by DNN ruins all the training and makes the performance of the DNN unreliable. Therefore, we need to control the raw data using in training. Here, we name the explicit raw data as ``content\u27\u27 and the implicit logic learned by the DNN as ``knowledge\u27\u27 in this dissertation. By quantifying the information in DNN\u27s training, we find that the information learned by the network is much less than the information contained in the dataset. It indicates that it is unnecessary to train the neural network with all of the information, which means using partial information for training can also achieve a similar effect of using full information. In other words, it is possible to control the content fed into the DNN, and this strategy shown in this study can reduce the risks (e.g., overfitting and shortcuts) mentioned above. Moreover, use reconstructed data (with partial information) to train the network can reduce the complexity of the network and accelerate the training. In this dissertation, we provide a pipeline to implement content control in DNN\u27s training. We use a series of experiments to prove its feasibility in two applications. One is human brain anatomy structure analysis, and the other is human pose detection and classification
    corecore