3 research outputs found

    On Graph Crossing Number and Edge Planarization

    Full text link
    Given an n-vertex graph G, a drawing of G in the plane is a mapping of its vertices into points of the plane, and its edges into continuous curves, connecting the images of their endpoints. A crossing in such a drawing is a point where two such curves intersect. In the Minimum Crossing Number problem, the goal is to find a drawing of G with minimum number of crossings. The value of the optimal solution, denoted by OPT, is called the graph's crossing number. This is a very basic problem in topological graph theory, that has received a significant amount of attention, but is still poorly understood algorithmically. The best currently known efficient algorithm produces drawings with O(log2n)(n+OPT)O(\log^2 n)(n + OPT) crossings on bounded-degree graphs, while only a constant factor hardness of approximation is known. A closely related problem is Minimum Edge Planarization, in which the goal is to remove a minimum-cardinality subset of edges from G, such that the remaining graph is planar. Our main technical result establishes the following connection between the two problems: if we are given a solution of cost k to the Minimum Edge Planarization problem on graph G, then we can efficiently find a drawing of G with at most \poly(d)\cdot k\cdot (k+OPT) crossings, where dd is the maximum degree in G. This result implies an O(n\cdot \poly(d)\cdot \log^{3/2}n)-approximation for Minimum Crossing Number, as well as improved algorithms for special cases of the problem, such as, for example, k-apex and bounded-genus graphs

    Adjacent Crossings Do Matter

    Full text link

    An Algorithm for the Graph Crossing Number Problem

    Full text link
    We study the Minimum Crossing Number problem: given an nn-vertex graph GG, the goal is to find a drawing of GG in the plane with minimum number of edge crossings. This is one of the central problems in topological graph theory, that has been studied extensively over the past three decades. The first non-trivial efficient algorithm for the problem, due to Leighton and Rao, achieved an O(nlog4n)O(n\log^4n)-approximation for bounded degree graphs. This algorithm has since been improved by poly-logarithmic factors, with the best current approximation ratio standing on O(n \poly(d) \log^{3/2}n) for graphs with maximum degree dd. In contrast, only APX-hardness is known on the negative side. In this paper we present an efficient randomized algorithm to find a drawing of any nn-vertex graph GG in the plane with O(OPT^{10}\cdot \poly(d \log n)) crossings, where OPTOPT is the number of crossings in the optimal solution, and dd is the maximum vertex degree in GG. This result implies an \tilde{O}(n^{9/10} \poly(d))-approximation for Minimum Crossing Number, thus breaking the long-standing O~(n)\tilde{O}(n)-approximation barrier for bounded-degree graphs
    corecore